No Arabic abstract
The cold dark matter (CDM) scenario has proved successful in cosmology. However, we lack a fundamental understanding of its microscopic nature. Moreover, the apparent disagreement between CDM predictions and subgalactic-structure observations has prompted the debate about its behaviour at small scales. These problems could be alleviated if the dark matter is composed of ultralight fields $m sim 10^{-22} text{eV}$, usually known as fuzzy dark matter (FDM). Some specific models, with axion-like potentials, have been thoroughly studied and are collectively referred to as ultralight axions (ULAs) or axion-like particles (ALPs). In this work we consider anharmonic corrections to the mass term coming from a repulsive quartic self-interaction. Whenever this anharmonic term dominates, the field behaves as radiation instead of cold matter, modifying the time of matter-radiation equality. Additionally, even for high masses, i.e. masses that reproduce the cold matter behaviour, the presence of anharmonic terms introduce a cut-off in the matter power spectrum through its contribution to the sound speed. We analyze the model and derive constraints using a modified version of CLASS and comparing with CMB and large-scale structure data.
We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter from Lyman-$alpha$ forest data. Extremely light bosons with a De Broglie wavelength of $sim 1$ kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time we use hydrodynamical simulations to model the Lyman-$alpha$ flux power spectrum in these models and compare with the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the IGM that allow for jumps in the temperature of up to $5000rm,K$, XQ-100 provides a lower limit of 7.1$times 10^{-22}$ eV, HIRES/MIKE returns a stronger limit of 14.3$times 10^{-22}$ eV, while the combination of both data sets results in a limit of 20 $times 10^{-22}$ eV (2$sigma$ C.L.). The limits for the analysis of the combined data sets increases to 37.5$times 10^{-22}$ eV (2$sigma$ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power-law in redshift. Light boson masses in the range $1-10 times10^{-22}$ eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the small scale crisis of the cold dark matter models.
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these interactions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E$_{nr}=75$ keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses $m_{chi}gtrsim150$ GeV are disfavored.
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the consequent injection of high-energy photons in the baryon-photon plasma. By keeping a phenomenological approach, we consider two broad classes of MDM in which Macros are composed either of ordinary matter or antimatter. In both scenarios, we also analyze the impact of a non-vanishing electric charge carried by Macros. We derive constraints on the Macro parameter space from three cosmological processes: the change in the baryon density between the end of the Big Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background (CMB) decoupling, the production of spectral distortions in the CMB and the kinetic coupling between charged MDM and baryons at the time of recombination. In the case of neutral Macros we find that the tightest constraints are set by the baryon density condition in most of the parameter space. For Macros composed of ordinary matter and with binding energy $I$, this leads to the following bound on the reduced cross-section: $sigma_X/M_X lesssim 6.8 cdot 10^{-7} left(I/mathrm{MeV}right)^{-1.56} , text{cm}^2 , text{g}^{-1}$. Charged Macros with surface potential $V_X$, instead, are mainly constrained by the tight coupling with baryons, resulting in $sigma_X/M_X lesssim 2 cdot 10^{-11} left(|V_X|/mathrm{MeV}right)^{-2} text{cm}^2 , text{g}^{-1}$. Finally, we show that future CMB spectral distortions experiments, like PIXIE and SuperPIXIE, would have the sensitivity to probe larger regions of the parameter space: this would allow either for a possible evidence or for an improvement of the current bounds on Macros as dark matter candidates.
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new search strategies for DM. Here we consider, for the first time, the possibility of DM having simultaneous interactions with photons, baryons, and dark radiation (DR). We have developed a new and efficient version of the Boltzmann code CLASS that allows for one DM species to have multiple interaction channels. With this framework we reassess existing cosmological bounds on the various interaction coefficients in multi-interacting DM scenarios. We find no clear degeneracies between these different interactions and show that their cosmological effects are largely additive. We further investigate the possibility of these models to alleviate the cosmological tensions, and find that the combination of DM-photon and DM-DR interactions can at the same time reduce the $S_8$ tension (from $2.3sigma$ to $1.2sigma$) and the $H_0$ tension (from $4.3sigma$ to $3.1sigma$). The public release of our code will pave the way for the study of various rich dark sectors.