No Arabic abstract
Previous works on formally studying mobile robotic swarms consider necessary and sufficient system hypotheses enabling to solve theoretical benchmark problems (geometric pattern formation, gathering, scattering, etc.). We argue that formal methods can also help in the early stage of mobile robotic swarms protocol design, to obtain protocols that are correct-by-design, even for problems arising from real-world use cases, not previously studied theoretically. Our position is supported by a concrete case study. Starting from a real-world case scenario, we jointly design the formal problem specification, a family of protocols that are able to solve the problem, and their corresponding proof of correctness, all expressed with the same formal framework. The concrete framework we use for our development is the PACTOLE library based on the COQ proof assistant.
Computer-Aided Design (CAD) applications are used in manufacturing to model everything from coffee mugs to sports cars. These programs are complex and require years of training and experience to master. A component of all CAD models particularly difficult to make are the highly structured 2D sketches that lie at the heart of every 3D construction. In this work, we propose a machine learning model capable of automatically generating such sketches. Through this, we pave the way for developing intelligent tools that would help engineers create better designs with less effort. Our method is a combination of a general-purpose language modeling technique alongside an off-the-shelf data serialization protocol. We show that our approach has enough flexibility to accommodate the complexity of the domain and performs well for both unconditional synthesis and image-to-sketch translation.
Engineering sketches form the 2D basis of parametric Computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch generation as a first step towards synthesis and composition of parametric CAD models. We propose two generative models, CurveGen and TurtleGen, for engineering sketch generation. Both models generate curve primitives without the need for a sketch constraint solver and explicitly consider topology for downstream use with constraints and 3D CAD modeling operations. We find in our perceptual evaluation using human subjects that both CurveGen and TurtleGen produce more realistic engineering sketches when compared with the current state-of-the-art for engineering sketch generation.
We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a {em weakly robust} polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths, it either (i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case (i) that it computes a clique partition, we show that it is guaranteed to be within $(1+eps)$ ratio of the optimum if the input is UDG; however if the input is not a UDG it either computes a clique partition as in case (i) with no guarantee on the quality of the clique partition or detects that it is not a UDG. Noting that recognition of UDGs is NP-hard even if we are given edge lengths, our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an $O(frac{log^* n}{eps^{O(1)}})$ time distributed PTAS. We consider a weighted version of the clique partition problem on vertex weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas useful in obtaining a PTAS breakdown. Yet, surprisingly, it admits a $(2+eps)$-approximation algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This improves on the best known 8-approximation for the {em unweighted} case for UDGs expressed in standard form.
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA 18] and [Bodwin, Patel PODC 19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and message complexities. The algorithms are based on the greedy approach of assigning the best item to the knapsack with the largest capacity. These algorithms obtain a solution with a bound of $frac{1}{n+1}$ times the optimum solution, with either $mathcal{O}left(mlog nright)$ time and $mathcal{O}left(m nright)$ messages, or $mathcal{O}left(mright)$ time and $mathcal{O}left(mn^{2}right)$ messages.