Do you want to publish a course? Click here

A new approach to the thermodynamic analysis of gas power cycles

65   0   0.0 ( 0 )
 Added by Boshu He
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Engineering Thermodynamics has been the core course of many science and engineering majors around the world, including energy and power, mechanical engineering, civil engineering, aerospace, cryogenic refrigeration, food engineering, chemical engineering, and environmental engineering, among which gas power cycle is one of the important contents. However, many Engineering Thermodynamics textbooks focus only on evaluating the thermal efficiency of gas power cycle, while the important concept of specific cycle work is ignored. Based on the generalized temperature-entropy diagram for the gas power cycles proposed by the authors, an ideal Otto cycle and an ideal Miller-Diesel cycle are taking as examples for the thermodynamic analyses of gas power cycles. The optimum compression ratio (or the pressure ratio) for the maximum specific cycle work or the maximum mean effective pressure is analyzed and determined. The ideal Otto and the ideal Miller-Diesel cycles, and also other gas power cycles for movable applications, are concluded that the operation under the maximum specific cycle work or the maximum mean effective pressure, instead of under the higher efficiency, is more economic and more reasonable. We concluded that the very important concept, i.e., the optimum compression (or pressure) ratio for the gas power cycles, should be emphasized in the Engineering Thermodynamics teaching process and in the latter revised or the newly edited textbooks, in order to better guide the engineering applications.



rate research

Read More

55 - Di He , Zhipeng Duan , Linbo Yan 2019
Engineering Thermodynamics has been the core course of many science and engineering majors at home and abroad, including energy and power, mechanical engineering, civil engineering, aerospace, cryogenic refrigeration, food engineering, chemical engineering, and environmental engineering, among which gas power cycle is one of the important contents. However, many Engineering Thermodynamics textbooks at home and abroad focus only on evaluating the thermal efficiency of gas power cycle, while the important concept of specific cycle net work is ignored. Taking an ideal Otto cycle and an ideal Brayton as examples, the optimum compression ratio (or the pressure ratio) and the maximum specific cycle net work are analyzed and determined. The ideal Otto and the ideal Brayton cycles, and also other gas power cycles, are concluded that the operation under the optimum compression/pressure ratio of the engine, instead of under the higher efficiency, is more economic and more reasonable. We concluded that the two very important concepts, i.e., the maximum specific cycle net work and the optimum compression (or pressure) ratio for the gas power cycles, should be emphasized in the Engineering Thermodynamics teaching process and the latter revised or the newly edited textbooks, in order to better guide the engineering applications. In the end, general T-s diagram is proposed for the gas power cycles.
We analyze a steady-state thermoelectric engine, whose working substance consists of two capacitively coupled quantum dots. One dot is tunnel-coupled to a hot reservoir serving as a heat source, the other one to two electrically biased reservoirs at a colder temperature, such that work is extracted under the form of a steady-state current against the bias. In single realizations of the dynamics of this steady-state engine autonomous, 4-stroke cycles can be identified. The cycles are purely stochastic, in contrast to mechanical autonomous engines which exhibit self-oscillations. In particular, these cycles fluctuate in direction and duration, and occur in competition with other spurious cycles. Using a stochastic thermodynamic approach, we quantify the cycle fluctuations and relate them to the entropy produced during individual cycles. We identify the cycle mainly responsible for the engine performance and quantify its statistics with tools from graph theory. We show that such stochastic cycles are made possible because the work extraction mechanism is itself stochastic instead of the periodic time dependence in the working-substance Hamiltonian which can be found in conventional mechanical engines. Our investigation brings new perspectives about the connection between cyclic and steady-state engines.
The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one can compute multiplicities numerically for a simple model system such as an Einstein solid -- a collection of identical quantum harmonic oscillators. A computer spreadsheet program or comparable software can compute the required combinatoric functions for systems containing a few hundred oscillators and units of energy. When two such systems can exchange energy, one immediately sees that some configurations are overwhelmingly more probable than others. Graphs of entropy vs. energy for the two systems can be used to motivate the theoretical definition of temperature, $T= (partial S/partial U)^{-1}$, thus bridging the gap between the classical and statistical approaches to entropy. Further spreadsheet exercises can be used to compute the heat capacity of an Einstein solid, study the Boltzmann distribution, and explore the properties of a two-state paramagnetic system.
144 - H. Dong , D.Z. Xu , C.P. Sun 2010
We study the physical mechanism of Maxwells Demon (MD) helping to do extra work in thermodynamic cycles, by describing measurement of position, insertion of wall and information erasing of MD in a quantum mechanical fashion. The heat engine is exemplified with one molecule confined in an infinitely deep square potential inserted with a movable solid wall, while the MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. It is discovered that the the MD with quantum coherence or on a lower temperature than that of the heat bath of the particle would enhance the ability of the whole work substance formed by the system plus the MD to do work outside. This observation reveals that the role of the MD essentially is to drive the whole work substance being off equilibrium, or equivalently working with an effective temperature difference. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts the common sense on Szilard heat engine (SHE). The quantum SHEs efficiency is evaluated in detail to prove the validity of second law of thermodynamics.
A superconductor/normal metal/superconductor Josephson junction is a coherent electron system where the thermodynamic entropy depends on temperature and phase difference across the weak-link. Here, exploiting the phase-temperature thermodynamic diagram of a thermally isolated system, we argue that a cooling effect can be achieved when the phase drop across the junction is brought from 0 to $pi$ in a iso-entropic process. We show that iso-entropic cooling can be enhanced with proper choice of geometrical and electrical parameters of the junction, i.e. by increasing the ratio between supercurrent and total junction volume. We present extensive numerical calculations using quasi-classical Green function methods for a short junction and we compare them with analytical results. Interestingly, we demonstrate that phase-coherent thermodynamic cycles can be implemented by combining iso-entropic and iso-phasic processes acting on the weak-link, thereby engineering the coherent version of thermal machines such as engines and cooling systems. We therefore evaluate their performances and the minimum temperature achievable in a cooling cycle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا