No Arabic abstract
This paper describes the design, implementation, and verification of a test-bed for determining the noise temperature of radio antennas operating between 400-800MHz. The requirements for this test-bed were driven by the HIRAX experiment, which uses antennas with embedded amplification, making system noise characterization difficult in the laboratory. The test-bed consists of two large cylindrical cavities, each containing radio-frequency (RF) absorber held at different temperatures (300K and 77K), allowing a measurement of system noise temperature through the well-known Y-factor method. The apparatus has been constructed at Yale, and over the course of the past year has undergone detailed verification measurements. To date, three preliminary noise temperature measurement sets have been conducted using the system, putting us on track to make the first noise temperature measurements of the HIRAX feed and perform the first analysis of feed repeatability.
The Ultra-Fast Flash Observatory (UFFO) is a new space-based experiment to observe Gamma-Ray Bursts (GRBs). GRBs are the most luminous electromagnetic events in the universe and occur randomly in any direction. Therefore the UFFO consists of two telescopes; UFFO Burst Alert & Trigger Telescope (UBAT) to detect GRBs using a wide field-of-view (FOV), and a Slewing Mirror Telescope (SMT) to observe UV/optical events rapidly within the narrow, targeted FOV. The SMT is a Ritchey-Chretien telescope that uses a motorized mirror system and an Intensified Charge-Coupled Device (ICCD). When the GRB is triggered by the UBAT, the SMT receives the position information and rapidly tilts the mirror to the target. The ICCD start to take the data within a second after GRB is triggered. Here we give the details about the SMT readout electronics that deliver the data.
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km$^2$ large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 10$^{17}$ eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment.
The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, low-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a planned interferometric radio telescope array that will ultimately consist of 1024 close packed 6 m dishes that will be deployed at the SKA South Africa site. HIRAX will survey the majority of the southern sky to measure baryon acoustic oscillations (BAO) using the 21 cm hyperfine transition of neutral hydrogen. It will operate between 400-800 MHz with 391 kHz resolution, corresponding to a redshift range of $0.8 < z < 2.5$ and a minimum $Delta z/z$ of ~0.003. One of the primary science goals of HIRAX is to constrain the dark energy equation of state by measuring the BAO scale as a function of redshift over a cosmologically significant range. Achieving this goal places stringent requirements on the mechanical and optical design of the HIRAX instrument which are described in this paper. This includes the simulations used to optimize the instrument, including the dish focal ratio, receiver support mechanism, and instrument cabling. As a result of these simulations, the dish focal ratio has been reduced to 0.23 to reduce inter-dish crosstalk, the feed support mechanism has been redesigned as a wide (35 cm diam.) central column, and the feed design has been modified to allow the cabling for the receiver to pass directly along the symmetry axis of the feed and dish in order to eliminate beam asymmetries and reduce sidelobe amplitudes. The beams from these full-instrument simulations are also used in an astrophysical m-mode analysis pipeline which is used to evaluate cosmological constraints and determine potential systematic contamination due to physical non-redundancies of the array elements. This end-to-end simulation pipeline was used to inform the dish manufacturing and assembly specifications which will guide the production and construction of the first-stage HIRAX 256-element array.
Axion Dark Matter eXperiment (ADMX) ultra low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the $2.66$ to $3.1$ $mu$eV mass range with Dine-Fischler-Srednicki-Zhitnisky (DFSZ) sensitivity Ref. [1,2]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as state-of-the-art quantum limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable Microstrip Superconducting Quantum Interference Device (SQUID) Amplifier (MSA), in Run 1A, and a Josephson Parametric Amplifier (JPA), in Run 1B, along with novel analysis tools that characterize the system noise temperature.