No Arabic abstract
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a planned interferometric radio telescope array that will ultimately consist of 1024 close packed 6 m dishes that will be deployed at the SKA South Africa site. HIRAX will survey the majority of the southern sky to measure baryon acoustic oscillations (BAO) using the 21 cm hyperfine transition of neutral hydrogen. It will operate between 400-800 MHz with 391 kHz resolution, corresponding to a redshift range of $0.8 < z < 2.5$ and a minimum $Delta z/z$ of ~0.003. One of the primary science goals of HIRAX is to constrain the dark energy equation of state by measuring the BAO scale as a function of redshift over a cosmologically significant range. Achieving this goal places stringent requirements on the mechanical and optical design of the HIRAX instrument which are described in this paper. This includes the simulations used to optimize the instrument, including the dish focal ratio, receiver support mechanism, and instrument cabling. As a result of these simulations, the dish focal ratio has been reduced to 0.23 to reduce inter-dish crosstalk, the feed support mechanism has been redesigned as a wide (35 cm diam.) central column, and the feed design has been modified to allow the cabling for the receiver to pass directly along the symmetry axis of the feed and dish in order to eliminate beam asymmetries and reduce sidelobe amplitudes. The beams from these full-instrument simulations are also used in an astrophysical m-mode analysis pipeline which is used to evaluate cosmological constraints and determine potential systematic contamination due to physical non-redundancies of the array elements. This end-to-end simulation pipeline was used to inform the dish manufacturing and assembly specifications which will guide the production and construction of the first-stage HIRAX 256-element array.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-Integral Field Unit (IFU) instrument, planned to be mounted on the 3.6m Devasthal optical telescope in Nainital, India. It has eight identical, fiber-fed spectrographs to disperse light coming from 16 IFUs. The spectrographs produce 2,304 spectra over a 370-740nm wavelength range simultaneously with a spectral resolution of R=1200-2400. It is composed of all-refractive, all spherical optics designed to achieve on average 26.0% throughput from the telescope to the CCD with the help of high transmission spectrograph optics, volume phase holographic grating, and graded coated e2v 2K by 4K CCD. We present the optical and opto-mechanical design of the spectrograph as well as current development status. Optics and optomechanical components for the spectrographs are being fabricated.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400-800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping). The resulting maps of large-scale structure at redshifts 0.8-2.5 will be used to measure Baryon Acoustic Oscillations (BAO). HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAXs location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and eXperimentciently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical performance of this novel extreme AO design will be presented here for the first time. Some highlights of the design are: 1) a floating, but height stabilized, optical table; 2) a Woofer tweeter (2040 actuator BMC MEMS DM) design where the Woofer can be the current f/16 MagAO ASM or, more likely, fed by the facility f/11 static secondary to an ALPAO DM97 woofer; 3) 22 very compact optical mounts that have a novel locking clamp for additional thermal and vibrational stability; 4) A series of four pairs of super-polished off-axis parabolic (OAP) mirrors with a relatively wide FOV by matched OAP clocking; 5) an advanced very broadband (0.5-1.7micron) ADC design; 6) A Pyramid (PWFS), and post-coronagraphic LOWFS NCP wavefront sensor; 7) a vAPP coronagraph for starlight suppression. Currently all the OAPs have just been delivered, and all the rest of the optics are in the lab. Most of the major mechanical parts are in the lab or instrument, and alignment of the optics has occurred for some of the optics (like the PWFS) and most of the mounts. First light should be in 2019A.
LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation.
The Cherenkov Telescope Array (CTA) is an international next-generation ground-based gamma-ray observatory. CTA will be implemented as southern and northern hemisphere arrays of tens of small, medium and large-sized imaging Cherenkov telescopes with the goal of improving the sensitivity over the current-generation experiments by an order of magnitude. CTA will provide energy coverage from ~20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium size (9.5m) telescopes will feature a novel aplanatic two-mirror optical design capable of accommodating a wide field-of-view with significantly improved angular resolution as compared to the traditional Davies-Cotton optical design. A full-scale prototype SC medium size telescope structure has been designed and will be constructed at the Fred Lawrence Whipple Observatory in southern Arizona during the fall of 2015. concentrate on the novel features of the design.