No Arabic abstract
Using {it Gaia} Early Data Release 3 (EDR3) parallaxes and Bayesian inference, we infer a parallax of the Westerlund 1 (Wd1) cluster. We find a parallax of $0.34pm{0.05}$ mas corresponding to a distance of $2.8^{+0.7}_{-0.6}$ kpc. The new {it Gaia} EDR3 distance is consistent with our previous result using {it Gaia} DR2 parallaxes. This confirms that Wd1 is less massive and older than previously assumed. Compared to DR2, the EDR3 individual parallax uncertainties for each star decreased by 30%. However, the aggregate parallax uncertainty for the cluster remained the same. This suggests that the uncertainty is dominated by systematics, which is possibly due to crowding, motions within the cluster, or motions due to binary orbits.
For 32 central stars of PNe we present their parameters interpolated among the new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 $M_odot$ in good agreement with the peak in the white dwarf mass distribution. Consequently, the inferred star formation history of the Galactic bulge is well restricted between 3 and 11 Gyr and is compatible with other published studies. The new evolutionary tracks proved a very good as a tool for analysis of late stages of stars life. The result provide a compelling confirmation of the accelerated post-AGB evolution.
The Gaia Data Release 2 provides a parallax of 0.734+/-0.073 mas for SDSS J102915+172927, currently the most metal-poor known object. This parallax implies that it is dwarf star, ruling out the scenario that it is a subgiant. The subgiant scenario had as a corollary that the star had been formed in a medium highly enriched in C, thus making line cooling efficient during the collapse, that was also highly enriched in Fe by Type Ia SNe. This scenario can also now be ruled out for this star, reinforcing the need of dust cooling and fragmentation to explain its formation.
Using the recent GAIA eDR3 catalogue we construct a sample of solar neighbourhood isolated wide binaries satisfying a series of strict signal-to-noise data cuts, exclusion of random association criteria and detailed colour-magnitude diagram selections, to minimise the presence of any kinematic contaminating effects having been discussed in the literature to date. Our final high-purity sample consists of 421 binary pairs within 130 pc of the sun and in all cases high-quality GAIA single-stellar fits for both components of each binary (final average RUWE values of 0.99), both also restricted to the cleanest region of the main sequence. We find kinematics fully consistent with Newtonian expectations for separations, $s$, below 0.009 pc, with relative velocities scaling with $Delta V propto s^{-1/2}$ and a total binary mass, $M_{b}$, velocity scaling of $Delta V propto M_{b}^{1/2}$. For the separation region of $s> 0.009$ pc we obtain significantly different results, with a separation independent $Delta V approx 0.5$ km/s and a $Delta V propto M_{b}^{0.22 pm 0.18}$. This situation is highly reminiscent of the low acceleration galactic baryonic Tully-Fisher phenomenology, and indeed, the change from the two regimes we find closely corresponds to the $a lesssim a_{0}$ transition.
The second data release of it Gaia rm revealed a parallax zero point offset of $-0.029$~mas based on quasars. The value depended on the position on the sky, and also likely on magnitude and colour. The offset and its dependence on other parameters inhibited an improvement in the local distance scale using e.g. the Cepheid and RR Lyrae period-luminosity relations. Analysis of the recent it Gaia rm Early Data Release 3 (EDR3) reveals a mean parallax zero point offset of $-0.021$~mas based on quasars. The it Gaia rm team addresses the parallax zero point offset in detail and proposes a recipe to correct for it, based on ecliptic latitude, $G$-band magnitude, and colour information. This paper is a completely independent investigation into this issue focussing on the spatial dependence of the correction based on quasars and the magnitude dependence based on wide binaries. The spatial and magnitude corrections are connected to each other in the overlap region between $17 < G < 19$. The spatial correction is presented at several spatial resolutions based on the HEALPix formalism. The colour dependence of the parallax offset is unclear and in any case secondary to the spatial and magnitude dependence. The spatial and magnitude corrections are applied to two samples of brighter sources, namely a sample of $sim$100 stars with independent trigonometric parallax measurements from it HST rm data, and a sample of 75 classical cepheids using photometric parallaxes. The mean offset between the observed GEDR3 parallax and the independent trigonometric parallax (excluding outliers) is about $-39$~muas, and after applying the correction it is consistent with being zero. For the classical cepheid sample it is suggested that the photometric parallaxes may be underestimated by about 5%.
The early third data release (EDR3) of the European Space Agency satellite Gaia provides coordinates, parallaxes, and proper motions for ~1.47 billion sources in our Milky Way, based on 34 months of observations. The combination of Gaia DR2 radial velocities with the more precise and accurate astrometry provided by Gaia EDR3 makes the best dataset available to search for the fastest nearby stars in our Galaxy. We compute the velocity distribution of ~7 million stars with precise parallaxes, to investigate the high-velocity tail of the velocity distribution of stars in the Milky Way. We release a catalogue with distances, total velocities, and corresponding uncertainties for all the stars considered in our analysis, available at https://sites.google.com/view/tmarchetti/research . By applying quality cuts on the Gaia astrometry and radial velocities, we identify a clean subset of 94 stars with a probability Pub > 50% to be unbound from our Galaxy. 17 of these have Pub > 80% and are our best candidates. We propagate these stars in the Galactic potential to characterize their orbits. We find that 11 stars are consistent with being ejected from the Galactic disk, and are possible hyper-runaway star candidates. The other 6 stars are not consistent with coming from a known star-forming region. We investigate the effect of adopting a parallax zero point correction, which strongly impacts our results: when applying this correction, we identify only 12 stars with Pub > 50%, 3 of these having Pub > 80%. Spectroscopic follow-ups with ground-based telescopes are needed to confirm the candidates identified in this work.