No Arabic abstract
The advent of artificial intelligence (AI) and machine learning (ML) bring human-AI interaction to the forefront of HCI research. This paper argues that games are an ideal domain for studying and experimenting with how humans interact with AI. Through a systematic survey of neural network games (n = 38), we identified the dominant interaction metaphors and AI interaction patterns in these games. In addition, we applied existing human-AI interaction guidelines to further shed light on player-AI interaction in the context of AI-infused systems. Our core finding is that AI as play can expand current notions of human-AI interaction, which are predominantly productivity-based. In particular, our work suggests that game and UX designers should consider flow to structure the learning curve of human-AI interaction, incorporate discovery-based learning to play around with the AI and observe the consequences, and offer users an invitation to play to explore new forms of human-AI interaction.
Designing human-centered AI-driven applications require deep understandings of how people develop mental models of AI. Currently, we have little knowledge of this process and limited tools to study it. This paper presents the position that AI-based games, particularly the player-AI interaction component, offer an ideal domain to study the process in which mental models evolve. We present a case study to illustrate the benefits of our approach for explainable AI.
Reinforcement Learning AI commonly uses reward/penalty signals that are objective and explicit in an environment -- e.g. game score, completion time, etc. -- in order to learn the optimal strategy for task performance. However, Human-AI interaction for such AI agents should include additional reinforcement that is implicit and subjective -- e.g. human preferences for certain AI behavior -- in order to adapt the AI behavior to idiosyncratic human preferences. Such adaptations would mirror naturally occurring processes that increase trust and comfort during social interactions. Here, we show how a hybrid brain-computer-interface (hBCI), which detects an individuals level of interest in objects/events in a virtual environment, can be used to adapt the behavior of a Deep Reinforcement Learning AI agent that is controlling a virtual autonomous vehicle. Specifically, we show that the AI learns a driving strategy that maintains a safe distance from a lead vehicle, and most novelly, preferentially slows the vehicle when the human passengers of the vehicle encounter objects of interest. This adaptation affords an additional 20% viewing time for subjectively interesting objects. This is the first demonstration of how an hBCI can be used to provide implicit reinforcement to an AI agent in a way that incorporates user preferences into the control system.
As AI continues to advance, human-AI teams are inevitable. However, progress in AI is routinely measured in isolation, without a human in the loop. It is crucial to benchmark progress in AI, not just in isolation, but also in terms of how it translates to helping humans perform certain tasks, i.e., the performance of human-AI teams. In this work, we design a cooperative game - GuessWhich - to measure human-AI team performance in the specific context of the AI being a visual conversational agent. GuessWhich involves live interaction between the human and the AI. The AI, which we call ALICE, is provided an image which is unseen by the human. Following a brief description of the image, the human questions ALICE about this secret image to identify it from a fixed pool of images. We measure performance of the human-ALICE team by the number of guesses it takes the human to correctly identify the secret image after a fixed number of dialog rounds with ALICE. We compare performance of the human-ALICE teams for t
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each groups interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.
Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.