No Arabic abstract
CNN model is a popular method for imagery analysis, so it could be utilized to recognize handwritten digits based on MNIST datasets. For higher recognition accuracy, various CNN models with different fully connected layer sizes are exploited to figure out the relationship between the CNN fully connected layer size and the recognition accuracy. Inspired by previous pruning work, we performed pruning methods of distinctiveness on CNN models and compared the pruning performance with NN models. For better pruning performances on CNN, the effect of angle threshold on the pruning performance was explored. The evaluation results show that: for the fully connected layer size, there is a threshold, so that when the layer size increases, the recognition accuracy grows if the layer size smaller than the threshold, and falls if the layer size larger than the threshold; the performance of pruning performed on CNN is worse than on NN; as pruning angle threshold increases, the fully connected layer size and the recognition accuracy decreases. This paper also shows that for CNN models trained by the MNIST dataset, they are capable of handwritten digit recognition and achieve the highest recognition accuracy with fully connected layer size 400. In addition, for same dataset MNIST, CNN models work better than big, deep, simple NN models in a published paper.
Images of handwritten digits are different from natural images as the orientation of a digit, as well as similarity of features of different digits, makes confusion. On the other hand, deep convolutional neural networks are achieving huge success in computer vision problems, especially in image classification. BDNet is a densely connected deep convolutional neural network model used to classify (recognize) Bengali handwritten numeral digits. It is end-to-end trained using ISI Bengali handwritten numeral dataset. During training, untraditional data preprocessing and augmentation techniques are used so that the trained model works on a different dataset. The model has achieved the test accuracy of 99.775%(baseline was 99.40%) on the test dataset of ISI Bengali handwritten numerals. So, the BDNet model gives 62.5% error reduction compared to previous state-of-the-art models. Here we have also created a dataset of 1000 images of Bengali handwritten numerals to test the trained model, and it giving promising results. Codes, trained model and our own dataset are available at: {https://github.com/Sufianlab/BDNet}.
For the problem whether Graphic Processing Unit(GPU),the stream processor with high performance of floating-point computing is applicable to neural networks, this paper proposes the parallel recognition algorithm of Convolutional Neural Networks(CNNs).It adopts Compute Unified Device Architecture(CUDA)technology, definite the parallel data structures, and describes the mapping mechanism for computing tasks on CUDA. It compares the parallel recognition algorithm achieved on GPU of GTX200 hardware architecture with the serial algorithm on CPU. It improves speed by nearly 60 times. Result shows that GPU based the stream processor architecture ate more applicable to some related applications about neural networks than CPU.
Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR) have resorted to digit segmentation, which is dominated by heuristics, thereby imposing substantial constraints on the final performance. Few of them have been based on segmentation-free strategies where each pixel column has a potential cut location. Recently, segmentation-free strategies has added another perspective to the problem, leading to promising results. However, these strategies still show some limitations when dealing with a large number of touching digits. To bridge the resulting gap, in this paper, we hypothesize that a string of digits can be approached as a sequence of objects. We thus evaluate different end-to-end approaches to solve the HDSR problem, particularly in two verticals: those based on object-detection (e.g., Yolo and RetinaNet) and those based on sequence-to-sequence representation (CRNN). The main contribution of this work lies in its provision of a comprehensive comparison with a critical analysis of the above mentioned strategies on five benchmarks commonly used to assess HDSR, including the challenging Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and CVL) proposed for the ICFHR 2014 competition on HDSR. Our results show that the Yolo model compares favorably against segmentation-free models with the advantage of having a shorter pipeline that minimizes the presence of heuristics-based models. It achieved a 97%, 96%, and 84% recognition rate on the NIST-SD19, CAR, and CVL datasets, respectively.
Channel pruning is a promising technique to compress the parameters of deep convolutional neural networks(DCNN) and to speed up the inference. This paper aims to address the long-standing inefficiency of channel pruning. Most channel pruning methods recover the prediction accuracy by re-training the pruned model from the remaining parameters or random initialization. This re-training process is heavily dependent on the sufficiency of computational resources, training data, and human interference(tuning the training strategy). In this paper, a highly efficient pruning method is proposed to significantly reduce the cost of pruning DCNN. The main contributions of our method include: 1) pruning compensation, a fast and data-efficient substitute of re-training to minimize the post-pruning reconstruction loss of features, 2) compensation-aware pruning(CaP), a novel pruning algorithm to remove redundant or less-weighted channels by minimizing the loss of information, and 3) binary structural search with step constraint to minimize human interference. On benchmarks including CIFAR-10/100 and ImageNet, our method shows competitive pruning performance among the state-of-the-art retraining-based pruning methods and, more importantly, reduces the processing time by 95% and data usage by 90%.
Automatic recognition of Urdu handwritten digits and characters, is a challenging task. It has applications in postal address reading, banks cheque processing, and digitization and preservation of handwritten manuscripts from old ages. While there exists a significant work for automatic recognition of handwritten English characters and other major languages of the world, the work done for Urdu lan-guage is extremely insufficient. This paper has two goals. Firstly, we introduce a pioneer dataset for handwritten digits and characters of Urdu, containing samples from more than 900 individuals. Secondly, we report results for automatic recog-nition of handwritten digits and characters as achieved by using deep auto-encoder network and convolutional neural network. More specifically, we use a two-layer and a three-layer deep autoencoder network and convolutional neural network and evaluate the two frameworks in terms of recognition accuracy. The proposed framework of deep autoencoder can successfully recognize digits and characters with an accuracy of 97% for digits only, 81% for characters only and 82% for both digits and characters simultaneously. In comparison, the framework of convolutional neural network has accuracy of 96.7% for digits only, 86.5% for characters only and 82.7% for both digits and characters simultaneously. These frameworks can serve as baselines for future research on Urdu handwritten text.