Do you want to publish a course? Click here

Post-Merger Jets from Supermassive Black Hole Coalescences as Electromagnetic Counterparts of Gravitational Wave Emission

98   0   0.0 ( 0 )
 Added by Chengchao Yuan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As a powerful source of gravitational waves (GW), a supermassive black hole (SMBH) merger may be accompanied by a relativistic jet that leads to detectable electromagnetic (EM) emission. We model the propagation of post-merger jets inside a pre-merger circumnuclear environment formed by disk winds, and calculate multi-wavelength EM spectra from the forward shock region. We show that the non-thermal EM signals from SMBH mergers are detectable up to the detection horizon of future GW facilities such as the Laser Interferometer Space Antenna (LISA). Calculations based on our model predict slowly fading transients with time delays from days to months after the coalescence, leading to implications for EM follow-up observations after the GW detection.

rate research

Read More

Supermassive black hole (SMBH) coalescences are ubiquitous in the history of the Universe and often exhibit strong accretion activities and powerful jets. These SMBH mergers are also promising candidates for future gravitational wave detectors such as Laser Space Inteferometric Antenna (LISA). In this work, we consider neutrino counterpart emission originating from the jet-induced shocks. The physical picture is that relativistic jets launched after the merger will push forward inside the premerger disk wind material, and then they subsequently get collimated, leading to the formation of internal shocks, collimation shocks, forward shocks and reverse shocks. Cosmic rays can be accelerated in these sites and neutrinos are expected via the photomeson production process. We formulate the jet structures and relevant interactions therein, and then evaluate neutrino emission from each shock site. We find that month-to-year high-energy neutrino emission from the postmerger jet after the gravitational wave event is detectable by IceCube-Gen2 within approximately five to ten years of operation in optimistic cases where the cosmic-ray loading is sufficiently high and a mildly super-Eddington accretion is achieved. We also estimate the contribution of SMBH mergers to the diffuse neutrino intensity, and find that a significant fraction of the observed very high-energy ($E_ ugtrsim1$ PeV) IceCube neutrinos could originate from them in the optimistic cases. In the future, such neutrino counterparts together with gravitational wave observations can be used in a multimessenger approach to elucidate in greater detail the evolution and the physical mechanism of SMBH mergers.
The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures associated with massive black hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick paced research area.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d MHD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-detection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in a hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا