Do you want to publish a course? Click here

High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers

300   0   0.0 ( 0 )
 Added by Chengchao Yuan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supermassive black hole (SMBH) coalescences are ubiquitous in the history of the Universe and often exhibit strong accretion activities and powerful jets. These SMBH mergers are also promising candidates for future gravitational wave detectors such as Laser Space Inteferometric Antenna (LISA). In this work, we consider neutrino counterpart emission originating from the jet-induced shocks. The physical picture is that relativistic jets launched after the merger will push forward inside the premerger disk wind material, and then they subsequently get collimated, leading to the formation of internal shocks, collimation shocks, forward shocks and reverse shocks. Cosmic rays can be accelerated in these sites and neutrinos are expected via the photomeson production process. We formulate the jet structures and relevant interactions therein, and then evaluate neutrino emission from each shock site. We find that month-to-year high-energy neutrino emission from the postmerger jet after the gravitational wave event is detectable by IceCube-Gen2 within approximately five to ten years of operation in optimistic cases where the cosmic-ray loading is sufficiently high and a mildly super-Eddington accretion is achieved. We also estimate the contribution of SMBH mergers to the diffuse neutrino intensity, and find that a significant fraction of the observed very high-energy ($E_ ugtrsim1$ PeV) IceCube neutrinos could originate from them in the optimistic cases. In the future, such neutrino counterparts together with gravitational wave observations can be used in a multimessenger approach to elucidate in greater detail the evolution and the physical mechanism of SMBH mergers.



rate research

Read More

As a powerful source of gravitational waves (GW), a supermassive black hole (SMBH) merger may be accompanied by a relativistic jet that leads to detectable electromagnetic (EM) emission. We model the propagation of post-merger jets inside a pre-merger circumnuclear environment formed by disk winds, and calculate multi-wavelength EM spectra from the forward shock region. We show that the non-thermal EM signals from SMBH mergers are detectable up to the detection horizon of future GW facilities such as the Laser Interferometer Space Antenna (LISA). Calculations based on our model predict slowly fading transients with time delays from days to months after the coalescence, leading to implications for EM follow-up observations after the GW detection.
The recent detection of possible neutrino emission from the blazar TXS 0506+056 was the first high-energy neutrino associated with an astrophysical source, making this special type of active galaxies promising neutrino emitters. The fact that two distinct episodes of neutrino emission were detected with a separation of around 3 years suggests that emission could be periodic. Periodic emission is expected from supermassive binary black hole systems due to jet precession close to the binarys merger. Here we show that if TXS 0506+056 is a binary source then the next neutrino flare could occur before the end of 2021. We derive the binary properties that would lead to the detection of gravitational waves from this system by LISA. Our results for the first time quantify the time scale of these correlations for the example of TXS 0506+056, providing clear predictions for both the neutrino and gravitational-wave signatures of such sources.
271 - Marc Favata 2009
Some astrophysical sources of gravitational waves can produce a memory effect, which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensors contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an effective-one-body (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to a redshift of two. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to gravitate.
One of the central goals of LISA is the detection of gravitational waves from the merger of supermassive black holes. Contrary to stellar-mass black hole mergers, such events are expected to be rich X-ray sources due to the accretion of material from the circumbinary disks onto the black holes. The orbital dynamics before merger is also expected to modulate the resulting X-ray emission via Doppler boosting in a quasi-periodic way, and in a simple phase relation with the gravitational wave from the inspiral of the black holes. Detecting the X-ray source would enable a precise and early localization of the binary, thus allowing many telescopes to observe the very moment of the merger. Although identifying the correct X-ray source in the relatively large LISA sky localization will be challenging due to the presence of many confounding point sources, the quasi-periodic modulation may aid in the identification. We explore the practical feasibility of such idea. We simulate populations of merging supermassive black holes, their detection with LISA and their X-ray lightcurves using a simple model. Taking the parameters of the X-ray Telescope on the proposed NASA Transient Astrophysics Probe, we then design and simulate an observation campaign that searches for the modulated X-ray source while LISA is still observing the inspiral of the black holes. Assuming a fiducial LISA detection rate of $10$ mergers per year at redshift closer than $3.5$, we expect a few detections of modulated X-ray counterparts over the nominal duration of the LISA mission.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا