No Arabic abstract
The Norton product is defined on each eigenspace of a distance regular graph by the orthogonal projection of the entry-wise product. The resulting algebra, known as the Norton algebra, is a commutative nonassociative algebra that is useful in group theory due to its interesting automorphism group. We provide a formula for the Norton product on each eigenspace of a Hamming graph using linear characters. We construct a large subgroup of automorphisms of the Norton algebra of a Hamming graph and completely describe the automorphism group in some cases. We also show that the Norton product on each eigenspace of a Hamming graph is as nonassociative as possible, except for some special cases in which it is either associative or equally as nonassociative as the so-called double minus operation previously studied by the author, Mickey, and Xu. Our results restrict to the hypercubes and extend to the halved and/or folded cubes, the bilinear forms graphs, and more generally, all Cayley graphs of finite abelian groups.
A Norton algebra is an eigenspace of a distance regular graph endowed with a commutative nonassociative product called the Norton product, which is defined as the projection of the entrywise product onto this eigenspace. The Norton algebras are useful in finite group theory as they have interesting automorphism groups. We provide a precise quantitative measurement for the nonassociativity of the Norton product on the eigenspace of the second largest eigenvalue of the Johnson graphs, Grassman graphs, Hamming graphs, and dual polar graphs, based on the formulas for this product established in previous work of Levstein, Maldonado and Penazzi. Our result shows that this product is as nonassociative as possible except for two cases, one being the trivial vanishing case while the other having connections with the integer sequence A000975 on OEIS and the so-called double minus operation studied recently by Huang, Mickey, and Xu.
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$-colorings of the graphs $H_2(n,n-1)$ a notion of robustness is introduced. It is based on the tolerance of swapping colors along an edge without destroying properness of the coloring. An explicit description of the maximally robust $4$-colorings of $H_2(n,n-1)$ is presented.
In this paper we give the relationship between the connected components of pure generalized Dynkin graphs and Nichols braided Lie algebras.
Following Britz, Johnsen, Mayhew and Shiromoto, we consider demi-ma-troids as a(nother) natural generalization of matroids. As they have shown, demi-ma-troids are the appropriate combinatorial objects for studying Weis duality. Our results here apport further evidence about the trueness of that observation. We define the Hamming polynomial of a demimatroid $M$, denoted by $W(x,y,t)$, as a generalization of the extended Hamming weight enumerator of a matroid. The polynomial $W(x,y,t)$ is a specialization of the Tutte polynomial of $M$, and actually is equivalent to it. Guided by work of Johnsen, Roksvold and Verdure for matroids, we prove that Betti numbers of a demimatroid and its elongations determine the Hamming polynomial. Our results may be applied to simplicial complexes since in a canonical way they can be viewed as demimatroids. Furthermore, following work of Brylawski and Gordon, we show how demimatroids may be generalized one step further, to combinatroids. A combinatroid, or Brylawski structure, is an integer valued function $rho$, defined over the power set of a finite ground set, satisfying the only condition $rho(emptyset)=0$. Even in this extreme generality, we will show that many concepts and invariants in coding theory can be carried on directly to combinatroids, say, Tutte polynomial, characteristic polynomial, MacWilliams identity, extended Hamming polynomial, and the $r$-th generalized Hamming polynomial; this last one, at least conjecturelly, guided by the work of Jurrius and Pellikaan for linear codes. All this largely extends the notions of deletion, contraction, duality and codes to non-matroidal structures.
A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ such that there exists a $k$-linear coloring of $G$. Akiyama, Exoo and Harary conjectured in 1980 that for every graph $G$, $chi_l(G)leq left lceil frac{Delta(G)+1}{2}rightrceil$ where $Delta(G)$ is the maximum degree of $G$. First, we prove the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of treewidth at most 3 and provides an alternative proof for the conjecture in some classes of graphs like cubic graphs and triangle-free planar graphs for which the conjecture was already known to be true. Next, for every 2-degenerate graph $G$, we show that $chi_l(G)=leftlceilfrac{Delta(G)}{2}rightrceil$ if $Delta(G)geq 5$. We conjecture that this equality holds also when $Delta(G)in{3,4}$ and show that this is the case for some well-known subclasses of 2-degenerate graphs. All our proofs can be converted into linear time algorithms.