Do you want to publish a course? Click here

Gravitational-wave Science in the High School Classroom

123   0   0.0 ( 0 )
 Added by Benjamin Farr
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article describes a set of curriculum modifications designed to integrate gravitational-wave science into a high school physics or astronomy curriculum. Gravitational-wave scientists are on the verge of being able to detect extreme cosmic events, like the merger of two black holes, happening hundreds of millions of light years away. Their work has the potential to propel astronomy into a new era by providing an entirely new means of observing astronomical phenomena. Gravitational-wave science encompasses astrophysics, physics, engineering, and quantum optics. As a result, this curriculum exposes students to the interdisciplinary nature of science. It also provides an authentic context for students to learn about astrophysical sources, data analysis techniques, cutting-edge detector technology, and error analysis.



rate research

Read More

Why is modern physics still today, more than 100 years after its birth, the privilege of an elite of scientists and unknown for the great majority of citizens? The answer is simple, since modern physics is in general not present in the standard physics curricula, except for some general outlines, in the final years of some secondary schools. But, is it possibile to teach modern physics in primary school? Is it effective? And, also, is it engaging for students? These are the simple questions which stimulated our research, based on an intervention performed in the last year of Italian primary school, focused on teaching gravity, according to the Einsteinian approach in the spirit of the Einstein First project, an international collaboration which aims to teach school age children the concepts of modern physics. The outcomes of our research study are in agreement with previous findings obtained in Australian schools, thus they contribute to validate them and show that there is no cultural effect, since the approach works in different education systems. Finally, our results are relevant also in terms of retention and prove that the students involved really understand the key ideas.
Machine learning has emerged as a popular and powerful approach for solving problems in astrophysics. We review applications of machine learning techniques for the analysis of ground-based gravitational-wave detector data. Examples include techniques for improving the sensitivity of Advanced LIGO and Advanced Virgo gravitational-wave searches, methods for fast measurements of the astrophysical parameters of gravitational-wave sources, and algorithms for reduction and characterization of non-astrophysical detector noise. These applications demonstrate how machine learning techniques may be harnessed to enhance the science that is possible with current and future gravitational-wave detectors.
The International Particle Physics Outreach Group (IPPOG) has been making concerted and systematic efforts to present and popularise particle physics across all audiences and age groups since 1997. Today the scientific community has in IPPOG a strategic pillar in fostering long-term, sustainable support for fundamental research around the world. One of the main tools IPPOG has been offering to the scientific community, teachers and educators for almost 10 years is the Resource Database (RDB), an online platform containing a collection of high quality engaging education and outreach materials in particle physics and related sciences.
The second generation of gravitational-wave detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfill the promise of gravitational-wave astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs.
Quantum computing is a growing field at the intersection of physics and computer science. This module introduces three of the key principles that govern how quantum computers work: superposition, quantum measurement, and entanglement. The goal of this module is to bridge the gap between popular science articles and advanced undergraduate texts by making some of the more technical aspects accessible to motivated high school students. Problem sets and simulation based labs of various levels are included to reinforce the conceptual ideas described in the text. This is intended as a one week course for high school students between the ages of 15-18 years. The course begins by introducing basic concepts in quantum mechanics which are needed to understand quantum computing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا