No Arabic abstract
Interleaved Reed-Solomon codes admit efficient decoding algorithms which correct burst errors far beyond half the minimum distance in the random errors regime, e.g., by computing a common solution to the Key Equation for each Reed-Solomon code, as described by Schmidt et al. This decoder may either fail to return a codeword, or it may miscorrect to an incorrect codeword, and good upper bounds on the fraction of error matrices for which these events occur are known. The decoding algorithm immediately applies to interleaved alternant codes as well, i.e., the subfield subcodes of interleaved Reed-Solomon codes, but the fraction of decodable error matrices differs, since the error is now restricted to a subfield. In this paper, we present new general lower and upper bounds on the fraction of error matrices decodable by Schmidt et al.s decoding algorithm, thereby making it the only decoding algorithm for interleaved alternant codes for which such bounds are known.
Generalized Goppa codes are defined by a code locator set $mathcal{L}$ of polynomials and a Goppa polynomial $G(x)$. When the degree of all code locator polynomials in $mathcal{L}$ is one, generalized Goppa codes are classical Goppa codes. In this work, binary generalized Goppa codes are investigated. First, a parity-check matrix for these codes with code locators of any degree is derived. A careful selection of the code locators leads to a lower bound on the minimum Hamming distance of generalized Goppa codes which improves upon previously known bounds. A quadratic-time decoding algorithm is presented which can decode errors up to half of the minimum distance. Interleaved generalized Goppa codes are introduced and a joint decoding algorithm is presented which can decode errors beyond half the minimum distance with high probability. Finally, some code parameters and how they apply to the Classic McEliece post-quantum cryptosystem are shown.
Recently, Martinez-Penas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martinez-Penas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
An efficient decoding algorithm for horizontally u-interleaved LRPC codes is proposed and analyzed. Upper bounds on the decoding failure rate and the computational complexity of the algorithm are derived. It is shown that interleaving reduces the decoding failure rate exponentially in the interleaving order u whereas the computational complexity grows linearly.
Lifted Reed-Solomon codes, a subclass of lifted affine-invariant codes, have been shown to be of high rate while preserving locality properties similar to generalized Reed-Muller codes, which they contain as subcodes. This work introduces a simple bounded distance decoder for (subcodes of) lifted affine-invariant codes that is guaranteed to decode up to almost half of their minimum distance. Further, long $q$-ary lifted affine-invariant codes are shown to correct almost all error patterns of relative weight $frac{q-1}{q}-epsilon$ for $epsilon>0$.
A framework for linear-programming (LP) decoding of nonbinary linear codes over rings is developed. This framework facilitates linear-programming based reception for coded modulation systems which use direct modulation mapping of coded symbols. It is proved that the resulting LP decoder has the maximum-likelihood certificate property. It is also shown that the decoder output is the lowest cost pseudocodeword. Equivalence between pseudocodewords of the linear program and pseudocodewords of graph covers is proved. It is also proved that if the modulator-channel combination satisfies a particular symmetry condition, the codeword error rate performance is independent of the transmitted codeword. Two alternative polytopes for use with linear-programming decoding are studied, and it is shown that for many classes of codes these polytopes yield a complexity advantage for decoding. These polytope representations lead to polynomial-time decoders for a wide variety of classical nonbinary linear codes. LP decoding performance is illustrated for the [11,6] ternary Golay code with ternary PSK modulation over AWGN, and in this case it is shown that the performance of the LP decoder is comparable to codeword-error-rate-optimum hard-decision based decoding. LP decoding is also simulated for medium-length ternary and quaternary LDPC codes with corresponding PSK modulations over AWGN.