Do you want to publish a course? Click here

Image deblurring based on lightweight multi-information fusion network

156   0   0.0 ( 0 )
 Added by Jianzhong Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.



rate research

Read More

The goal of multi-modal learning is to use complimentary information on the relevant task provided by the multiple modalities to achieve reliable and robust performance. Recently, deep learning has led significant improvement in multi-modal learning by allowing for the information fusion in the intermediate feature levels. This paper addresses a problem of designing robust deep multi-modal learning architecture in the presence of imperfect modalities. We introduce deep fusion architecture for object detection which processes each modality using the separate convolutional neural network (CNN) and constructs the joint feature map by combining the intermediate features from the CNNs. In order to facilitate the robustness to the degraded modalities, we employ the gated information fusion (GIF) network which weights the contribution from each modality according to the input feature maps to be fused. The weights are determined through the convolutional layers followed by a sigmoid function and trained along with the information fusion network in an end-to-end fashion. Our experiments show that the proposed GIF network offers the additional architectural flexibility to achieve robust performance in handling some degraded modalities, and show a significant performance improvement based on Single Shot Detector (SSD) for KITTI dataset using the proposed fusion network and data augmentation schemes.
89 - Xinyi Zhang , Hang Dong , Zhe Hu 2018
Single-image super-resolution is a fundamental task for vision applications to enhance the image quality with respect to spatial resolution. If the input image contains degraded pixels, the artifacts caused by the degradation could be amplified by super-resolution methods. Image blur is a common degradation source. Images captured by moving or still cameras are inevitably affected by motion blur due to relative movements between sensors and objects. In this work, we focus on the super-resolution task with the presence of motion blur. We propose a deep gated fusion convolution neural network to generate a clear high-resolution frame from a single natural image with severe blur. By decomposing the feature extraction step into two task-independent streams, the dual-branch design can facilitate the training process by avoiding learning the mixed degradation all-in-one and thus enhance the final high-resolution prediction results. Extensive experiments demonstrate that our method generates sharper super-resolved images from low-resolution inputs with high computational efficiency.
Single image super-resolution(SISR) has witnessed great progress as convolutional neural network(CNN) gets deeper and wider. However, enormous parameters hinder its application to real world problems. In this letter, We propose a lightweight feature fusion network (LFFN) that can fully explore multi-scale contextual information and greatly reduce network parameters while maximizing SISR results. LFFN is built on spindle blocks and a softmax feature fusion module (SFFM). Specifically, a spindle block is composed of a dimension extension unit, a feature exploration unit and a feature refinement unit. The dimension extension layer expands low dimension to high dimension and implicitly learns the feature maps which is suitable for the next unit. The feature exploration unit performs linear and nonlinear feature exploration aimed at different feature maps. The feature refinement layer is used to fuse and refine features. SFFM fuses the features from different modules in a self-adaptive learning manner with softmax function, making full use of hierarchical information with a small amount of parameter cost. Both qualitative and quantitative experiments on benchmark datasets show that LFFN achieves favorable performance against state-of-the-art methods with similar parameters.
This paper proposes a novel multi-exposure image fusion method based on exposure compensation. Multi-exposure image fusion is a method to produce images without color saturation regions, by using photos with different exposures. However, in conventional works, it is unclear how to determine appropriate exposure values, and moreover, it is difficult to set appropriate exposure values at the time of photographing due to time constraints. In the proposed method, the luminance of the input multi-exposure images is adjusted on the basis of the relationship between exposure values and pixel values, where the relationship is obtained by assuming that a digital camera has a linear response function. The use of a local contrast enhancement method is also considered to improve input multi-exposure images. The compensated images are finally combined by one of existing multi-exposure image fusion methods. In some experiments, the effectiveness of the proposed method are evaluated in terms of the tone mapped image quality index, statistical naturalness, and discrete entropy, by comparing the proposed one with conventional ones.
Capturing an all-in-focus image with a single camera is difficult since the depth of field of the camera is usually limited. An alternative method to obtain the all-in-focus image is to fuse several images focusing at different depths. However, existing multi-focus image fusion methods cannot obtain clear results for areas near the focused/defocused boundary (FDB). In this paper, a novel {alpha}-matte boundary defocus model is proposed to generate realistic training data with the defocus spread effect precisely modeled, especially for areas near the FDB. Based on this {alpha}-matte defocus model and the generated data, a cascaded boundary aware convolutional network termed MMF-Net is proposed and trained, aiming to achieve clearer fusion results around the FDB. More specifically, the MMF-Net consists of two cascaded sub-nets for initial fusion and boundary fusion, respectively; these two sub-nets are designed to first obtain a guidance map of FDB and then refine the fusion near the FDB. Experiments demonstrate that with the help of the new {alpha}-matte boundary defocus model, the proposed MMF-Net outperforms the state-of-the-art methods both qualitatively and quantitatively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا