No Arabic abstract
This paper proposes a novel multi-exposure image fusion method based on exposure compensation. Multi-exposure image fusion is a method to produce images without color saturation regions, by using photos with different exposures. However, in conventional works, it is unclear how to determine appropriate exposure values, and moreover, it is difficult to set appropriate exposure values at the time of photographing due to time constraints. In the proposed method, the luminance of the input multi-exposure images is adjusted on the basis of the relationship between exposure values and pixel values, where the relationship is obtained by assuming that a digital camera has a linear response function. The use of a local contrast enhancement method is also considered to improve input multi-exposure images. The compensated images are finally combined by one of existing multi-exposure image fusion methods. In some experiments, the effectiveness of the proposed method are evaluated in terms of the tone mapped image quality index, statistical naturalness, and discrete entropy, by comparing the proposed one with conventional ones.
Shadow removal is still a challenging task due to its inherent background-dependent and spatial-variant properties, leading to unknown and diverse shadow patterns. Even powerful state-of-the-art deep neural networks could hardly recover traceless shadow-removed background. This paper proposes a new solution for this task by formulating it as an exposure fusion problem to address the challenges. Intuitively, we can first estimate multiple over-exposure images w.r.t. the input image to let the shadow regions in these images have the same color with shadow-free areas in the input image. Then, we fuse the original input with the over-exposure images to generate the final shadow-free counterpart. Nevertheless, the spatial-variant property of the shadow requires the fusion to be sufficiently `smart, that is, it should automatically select proper over-exposure pixels from different images to make the final output natural. To address this challenge, we propose the shadow-aware FusionNet that takes the shadow image as input to generate fusion weight maps across all the over-exposure images. Moreover, we propose the boundary-aware RefineNet to eliminate the remaining shadow trace further. We conduct extensive experiments on the ISTD, ISTD+, and SRD datasets to validate our methods effectiveness and show better performance in shadow regions and comparable performance in non-shadow regions over the state-of-the-art methods. We release the model and code in https://github.com/tsingqguo/exposure-fusion-shadow-removal.
Deep convolutional neural networks (DCNN) aided high dynamic range (HDR) imaging recently received a lot of attention. The quality of DCNN generated HDR images have overperformed the traditional counterparts. However, DCNN is prone to be computationally intensive and power-hungry. To address the challenge, we propose LightFuse, a light-weight CNN-based algorithm for extreme dual-exposure image fusion, which can be implemented on various embedded computing platforms with limited power and hardware resources. Two sub-networks are utilized: a GlobalNet (G) and a DetailNet (D). The goal of G is to learn the global illumination information on the spatial dimension, whereas D aims to enhance local details on the channel dimension. Both G and D are based solely on depthwise convolution (D Conv) and pointwise convolution (P Conv) to reduce required parameters and computations. Experimental results display that the proposed technique could generate HDR images with plausible details in extremely exposed regions. Our PSNR score exceeds the other state-of-the-art approaches by 1.2 to 1.6 times and achieves 1.4 to 20 times FLOP and parameter reduction compared with others.
Recently, deep learning based image deblurring has been well developed. However, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from high computational burden. To solve this problem, we propose a lightweight multiinformation fusion network (LMFN) for image deblurring. The proposed LMFN is designed as an encoder-decoder architecture. In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion without a large amount of information loss. Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning while remaining sufficiently lightweight. Meanwhile, an information fusion strategy between distillation modules and feature channels is also carried out by attention mechanism. Through fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
Diabetic retinopathy (DR) is a leading cause of vision loss in the world and numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically classify the DR cases via the retinal fundus images (RFIs). However, RFIs are usually affected by the widely existing camera exposure while the robustness of DNNs to the exposure is rarely explored. In this paper, we study this problem from the viewpoint of adversarial attack and identify a totally new task, i.e., adversarial exposure attack generating adversarial images by tuning image exposure to mislead the DNNs with significantly high transferability. To this end, we first implement a straightforward method, i.e., multiplicative-perturbation-based exposure attack, and reveal the big challenges of this new task. Then, to make the adversarial image naturalness, we propose the adversarial bracketed exposure fusion that regards the exposure attack as an element-wise bracketed exposure fusion problem in the Laplacian-pyramid space. Moreover, to realize high transferability, we further propose the convolutional bracketed exposure fusion where the element-wise multiplicative operation is extended to the convolution. We validate our method on the real public DR dataset with the advanced DNNs, e.g., ResNet50, MobileNet, and EfficientNet, showing our method can achieve high image quality and success rate of the transfer attack. Our method reveals the potential threats to the DNN-based DR automated diagnosis and can definitely benefit the development of exposure-robust automated DR diagnosis method in the future.
High-dynamic-range (HDR) photography involves fusing a bracket of images taken at different exposure settings in order to compensate for the low dynamic range of digital cameras such as the ones used in smartphones. In this paper, a method for automatically selecting the exposure settings of such images is introduced based on the camera characteristic function. In addition, a new fusion method is introduced based on an optimization formulation and weighted averaging. Both of these methods are implemented on a smartphone platform as an HDR app to demonstrate the practicality of the introduced methods. Comparison results with several existing methods are presented indicating the effectiveness as well as the computational efficiency of the introduced solution.