Do you want to publish a course? Click here

The $mathcal{F}$-family of covariance functions: A Matern analogue for modeling random fields on spheres

45   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Mat{e}rn family of isotropic covariance functions has been central to the theoretical development and application of statistical models for geospatial data. For global data defined over the whole sphere representing planet Earth, the natural distance between any two locations is the great circle distance. In this setting, the Mat{e}rn family of covariance functions has a restriction on the smoothness parameter, making it an unappealing choice to model smooth data. Finding a suitable analogue for modelling data on the sphere is still an open problem. This paper proposes a new family of isotropic covariance functions for random fields defined over the sphere. The proposed family has a parameter that indexes the mean square differentiability of the corresponding Gaussian field, and allows for any admissible range of fractal dimension. Our simulation study mimics the fixed domain asymptotic setting, which is the most natural regime for sampling on a closed and bounded set. As expected, our results support the analogous results (under the same asymptotic scheme) for planar processes that not all parameters can be estimated consistently. We apply the proposed model to a dataset of precipitable water content over a large portion of the Earth, and show that the model gives more precise predictions of the underlying process at unsampled locations than does the Mat{e}rn model using chordal distances.



rate research

Read More

335 - Philip White , Emilio Porcu 2018
With the advent of wide-spread global and continental-scale spatiotemporal datasets, increased attention has been given to covariance functions on spheres over time. This paper provides results for stationary covariance functions of random fields defined over $d$-dimensional spheres cross time. Specifically, we provide a bridge between the characterization in cite{berg-porcu} for covariance functions on spheres cross time and Gneitings lemma citep{gneiting2002} that deals with planar surfaces. We then prove that there is a valid class of covariance functions similar in form to the Gneiting class of space-time covariance functions citep{gneiting2002} that replaces the squared Euclidean distance with the great circle distance. Notably, the provided class is shown to be positive definite on every $d$-dimensional sphere cross time, while the Gneiting class is positive definite over $R^d times R$ for fixed $d$ only. In this context, we illustrate the value of our adapted Gneiting class by comparing examples from this class to currently established nonseparable covariance classes using out-of-sample predictive criteria. These comparisons are carried out on two climate reanalysis datasets from the National Centers for Environmental Prediction and National Center for Atmospheric Research. For these datasets, we show that examples from our covariance class have better predictive performance than competing models.
The prevalence of multivariate space-time data collected from monitoring networks and satellites or generated from numerical models has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a key role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia.
Flexible multivariate covariance models for spatial data are on demand. This paper addresses the problem of parametric constraints for positive semidefiniteness of the multivariate Mat{e}rn model. Much attention has been given to the bivariate case, while highly multivariate cases have been explored to a limited extent only. The existing conditions often imply severe restrictions on the upper bounds for the collocated correlation coefficients, which makes the multivariate Mat{e}rn model appealing for the case of weak spatial cross-dependence only. We provide a collection of validity conditions for the multivariate Mat{e}rn covariance model that allows for more flexible parameterizations than those currently available. We also prove that, in several cases, we can attain much higher upper bounds for the collocated correlation coefficients in comparison with our competitors. We conclude with a simple illustration on a trivariate geochemical dataset and show that our enlarged parametric space allows for better fitting performance with respect to our competitors.
Physical processes that manifest as tangential vector fields on a sphere are common in geophysical and environmental sciences. These naturally occurring vector fields are often subject to physical constraints, such as being curl-free or divergence-free. We construct a new class of parametric models for cross-covariance functions of curl-free and divergence-free vector fields that are tangential to the unit sphere. These models are constructed by applying the surface gradient or the surface curl operator to scalar random potential fields defined on the unit sphere. We propose a likelihood-based estimation procedure for the model parameters and show that fast computation is possible even for large data sets when the observations are on a regular latitude-longitude grid. Characteristics and utility of the proposed methodology are illustrated through simulation studies and by applying it to an ocean surface wind velocity data set collected through satellite-based scatterometry remote sensing. We also compare the performance of the proposed model with a class of bivariate Matern models in terms of estimation and prediction, and demonstrate that the proposed model is superior in capturing certain physical characteristics of the wind fields.
This paper is an extension of Parts I and Ia of a series about Nu-class generalized functions. We provide hand-generated algebraic expressions for integrals of single Matern-covariance functions, as well as for products of two Matern-covariance functions, for all odd-half-integer class parameters. These are useful both for IMSPE-optimal design software and for testing universality of Nu-class generalized-function properties, across covariance classes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا