Do you want to publish a course? Click here

Visualization of Covariance Structures for Multivariate Spatio-Temporal Random Fields

243   0   0.0 ( 0 )
 Added by Huang Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The prevalence of multivariate space-time data collected from monitoring networks and satellites or generated from numerical models has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a key role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia.



rate research

Read More

Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically noisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
In this work we introduce a time- and memory-efficient method for structured prediction that couples neuron decisions across both space at time. We show that we are able to perform exact and efficient inference on a densely connected spatio-temporal graph by capitalizing on recent advances on deep Gaussian Conditional Random Fields (GCRFs). Our method, called VideoGCRF is (a) efficient, (b) has a unique global minimum, and (c) can be trained end-to-end alongside contemporary deep networks for video understanding. We experiment with multiple connectivity patterns in the temporal domain, and present empirical improvements over strong baselines on the tasks of both semantic and instance segmentation of videos.
This paper contributes to the multivariate analysis of marked spatio-temporal point process data by introducing different partial point characteristics and extending the spatial dependence graph model formalism. Our approach yields a unified framework for different types of spatio-temporal data including both, purely qualitatively (multivariate) cases and multivariate cases with additional quantitative marks. The proposed graphical model is defined through partial spectral density characteristics, it is highly computationally efficient and reflects the conditional similarity among sets of spatio-temporal sub-processes of either points or marked points with identical discrete marks. The paper considers three applications, two on crime data and a third one on forestry.
In this paper, we consider the Graphical Lasso (GL), a popular optimization problem for learning the sparse representations of high-dimensional datasets, which is well-known to be computationally expensive for large-scale problems. Recently, we have shown that the sparsity pattern of the optimal solution of GL is equivalent to the one obtained from simply thresholding the sample covariance matrix, for sparse graphs under different conditions. We have also derived a closed-form solution that is optimal when the thresholded sample covariance matrix has an acyclic structure. As a major generalization of the previous result, in this paper we derive a closed-form solution for the GL for graphs with chordal structures. We show that the GL and thresholding equivalence conditions can significantly be simplified and are expected to hold for high-dimensional problems if the thresholded sample covariance matrix has a chordal structure. We then show that the GL and thresholding equivalence is enough to reduce the GL to a maximum determinant matrix completion problem and drive a recursive closed-form solution for the GL when the thresholded sample covariance matrix has a chordal structure. For large-scale problems with up to 450 million variables, the proposed method can solve the GL problem in less than 2 minutes, while the state-of-the-art methods converge in more than 2 hours.
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decompositions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا