Do you want to publish a course? Click here

Leveraging Structured Biological Knowledge for Counterfactual Inference: a Case Study of Viral Pathogenesis

63   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Counterfactual inference is a useful tool for comparing outcomes of interventions on complex systems. It requires us to represent the system in form of a structural causal model, complete with a causal diagram, probabilistic assumptions on exogenous variables, and functional assignments. Specifying such models can be extremely difficult in practice. The process requires substantial domain expertise, and does not scale easily to large systems, multiple systems, or novel system modifications. At the same time, many application domains, such as molecular biology, are rich in structured causal knowledge that is qualitative in nature. This manuscript proposes a general approach for querying a causal biological knowledge graph, and converting the qualitative result into a quantitative structural causal model that can learn from data to answer the question. We demonstrate the feasibility, accuracy and versatility of this approach using two case studies in systems biology. The first demonstrates the appropriateness of the underlying assumptions and the accuracy of the results. The second demonstrates the versatility of the approach by querying a knowledge base for the molecular determinants of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm, and performing counterfactual inference to estimate the causal effect of medical countermeasures for severely ill patients.



rate research

Read More

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world infecting tens of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the viruss structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune systems protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.
Computational and mathematical models rely heavily on estimated parameter values for model development. Identifiability analysis determines how well the parameters of a model can be estimated from experimental data. Identifiability analysis is crucial for interpreting and determining confidence in model parameter values and to provide biologically relevant predictions. Structural identifiability analysis, in which one assumes data to be noiseless and arbitrarily fine-grained, has been extensively studied in the context of ordinary differential equation (ODE) models, but has not yet been widely explored for age-structured partial differential equation (PDE) models. These models present additional difficulties due to increased number of variables and partial derivatives as well as the presence of boundary conditions. In this work, we establish a pipeline for structural identifiability analysis of age-structured PDE models using a differential algebra framework and derive identifiability results for specific age-structured models. We use epidemic models to demonstrate this framework because of their wide-spread use in many different diseases and for the corresponding parallel work previously done for ODEs. In our application of the identifiability analysis pipeline, we focus on a Susceptible-Exposed-Infected model for which we compare identifiability results for a PDE and corresponding ODE system and explore effects of age-dependent parameters on identifiability. We also show how practical identifiability analysis can be applied in this example.
We consider problems in which a system receives external emph{perturbations} from time to time. For instance, the system can be a train network in which particular lines are repeatedly disrupted without warning, having an effect on passenger behavior. The goal is to predict changes in the behavior of the system at particular points of interest, such as passenger traffic around stations at the affected rails. We assume that the data available provides records of the system functioning at its natural regime (e.g., the train network without disruptions) and data on cases where perturbations took place. The inference problem is how information concerning perturbations, with particular covariates such as location and time, can be generalized to predict the effect of novel perturbations. We approach this problem from the point of view of a mapping from the counterfactual distribution of the system behavior without disruptions to the distribution of the disrupted system. A variant on emph{distribution regression} is developed for this setup.
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا