Do you want to publish a course? Click here

Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises

276   0   0.0 ( 0 )
 Added by Ludovic Goudenege
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the asymptotic properties of the stochastic Cahn-Hilliard equation with the logarithmic free energy by establishing different dimension-free Harnack inequalities according to various kinds of noises. The main characteristics of this equation are the singularities of the logarithmic free energy at 1 and --1 and the conservation of the mass of the solution in its spatial variable. Both the space-time colored noise and the space-time white noise are considered. For the highly degenerate space-time colored noise, the asymptotic log-Harnack inequality is established under the so-called essentially elliptic conditions. And the Harnack inequality with power is established for non-degenerate space-time white noise.



rate research

Read More

We explore recent progress and open questions concerning local minima and saddle points of the Cahn--Hilliard energy in $dgeq 2$ and the critical parameter regime of large system size and mean value close to $-1$. We employ the String Method of E, Ren, and Vanden-Eijnden -- a numerical algorithm for computing transition pathways in complex systems -- in $d=2$ to gain additional insight into the properties of the minima and saddle point. Motivated by the numerical observations, we adapt a method of Caffarelli and Spruck to study convexity of level sets in $dgeq 2$.
We consider a class of six-order Cahn-Hilliard equations with logarithmic type potential. This system is closely connected with some important phase-field models relevant in different applications, for instance, the functionalized Cahn-Hilliard equation that describes phase separation in mixtures of amphiphilic molecules in solvent, and the Willmore regularization of Cahn-Hilliard equation for anisotropic crystal and epitaxial growth. The singularity of the configuration potential guarantees that the solution always stays in the physical relevant domain [-1,1]. Meanwhile, the resulting system is characterized by some highly singular diffusion terms that make the mathematical analysis more involved. We prove existence and uniqueness of global weak solutions and show their parabolic regularization property for any positive time. Besides, we investigate long-time behavior of the system, proving existence of the global attractor for the associated dynamical process in a suitable complete metric space.
146 - Zhaoyang Qiu 2020
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2times H^1$, working with the weak topology. Also, the existence of global pathwise solution is investigated using the stochastic compactness argument.
We study initial boundary value problems for the convective Cahn-Hilliard equation $Dt u +px^4u +upx u+px^2(|u|^pu)=0$. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any $p>0$. In contrast to that, we show that the presence of the convective term $upx u$ in the Cahn-Hilliard equation prevents blow up at least for $0<p<frac49$. We also show that the blowing up solutions still exist if $p$ is large enough ($pge2$). The related equations like Kolmogorov-Sivashinsky-Spiegel equation, sixth order convective Cahn-Hilliard equation, are also considered.
We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binary alloys with induced reaction and type-I superconductors. The second one is the Cahn-Hilliard type equation introduced by Bertozzi et al. to describe image inpainting. Here we take a free energy functional which accounts for nonlocal interactions. Our choice is motivated by the work of Giacomin and Lebowitz who showed that the rigorous physical derivation of the Cahn-Hilliard equation leads to consider nonlocal functionals. The equations also have a transport term with a given velocity field and are subject to a homogenous Neumann boundary condition for the chemical potential, i.e., the first variation of the free energy functional. We first establish the well-posedness of the corresponding initial and boundary value problems in a weak setting. Then we consider such problems as dynamical systems and we show that they have bounded absorbing sets and global attractors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا