Do you want to publish a course? Click here

A*HAR: A New Benchmark towards Semi-supervised learning for Class-imbalanced Human Activity Recognition

116   0   0.0 ( 0 )
 Added by Arun Raja
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the vast literature on Human Activity Recognition (HAR) with wearable inertial sensor data, it is perhaps surprising that there are few studies investigating semisupervised learning for HAR, particularly in a challenging scenario with class imbalance problem. In this work, we present a new benchmark, called A*HAR, towards semisupervised learning for class-imbalanced HAR. We evaluate state-of-the-art semi-supervised learning method on A*HAR, by combining Mean Teacher and Convolutional Neural Network. Interestingly, we find that Mean Teacher boosts the overall performance when training the classifier with fewer labelled samples and a large amount of unlabeled samples, but the classifier falls short in handling unbalanced activities. These findings lead to an interesting open problem, i.e., development of semi-supervised HAR algorithms that are class-imbalance aware without any prior knowledge on the class distribution for unlabeled samples. The dataset and benchmark evaluation are released at https://github.com/I2RDL2/ASTAR-HAR for future research.

rate research

Read More

Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many SSL algorithms show lower performance for the datasets with the imbalanced class distribution. In this paper, we introduce a task of class-imbalanced semi-supervised learning (CISSL), which refers to semi-supervised learning with class-imbalanced data. In doing so, we consider class imbalance in both labeled and unlabeled sets. First, we analyze existing SSL methods in imbalanced environments and examine how the class imbalance affects SSL methods. Then we propose Suppressed Consistency Loss (SCL), a regularization method robust to class imbalance. Our method shows better performance than the conventional methods in the CISSL environment. In particular, the more severe the class imbalance and the smaller the size of the labeled data, the better our method performs.
Training deep learning models on in-home IoT sensory data is commonly used to recognise human activities. Recently, federated learning systems that use edge devices as clients to support local human activity recognition have emerged as a new paradigm to combine local (individual-level) and global (group-level) models. This approach provides better scalability and generalisability and also offers better privacy compared with the traditional centralised analysis and learning models. The assumption behind federated learning, however, relies on supervised learning on clients. This requires a large volume of labelled data, which is difficult to collect in uncontrolled IoT environments such as remote in-home monitoring. In this paper, we propose an activity recognition system that uses semi-supervised federated learning, wherein clients conduct unsupervised learning on autoencoders with unlabelled local data to learn general representations, and a cloud server conducts supervised learning on an activity classifier with labelled data. Our experimental results show that using a long short-term memory autoencoder and a Softmax classifier, the accuracy of our proposed system is higher than that of both centralised systems and semi-supervised federated learning using data augmentation. The accuracy is also comparable to that of supervised federated learning systems. Meanwhile, we demonstrate that our system can reduce the number of needed labels and the size of local models, and has faster local activity recognition speed than supervised federated learning does.
95 - Chenglin Li , Di Niu , Bei Jiang 2021
Human activity recognition (HAR) based on mobile sensors plays an important role in ubiquitous computing. However, the rise of data regulatory constraints precludes collecting private and labeled signal data from personal devices at scale. Federated learning has emerged as a decentralized alternative solution to model training, which iteratively aggregates locally updated models into a shared global model, therefore being able to leverage decentralized, private data without central collection. However, the effectiveness of federated learning for HAR is affected by the fact that each user has different activity types and even a different signal distribution for the same activity type. Furthermore, it is uncertain if a single global model trained can generalize well to individual users or new users with heterogeneous data. In this paper, we propose Meta-HAR, a federated representation learning framework, in which a signal embedding network is meta-learned in a federated manner, while the learned signal representations are further fed into a personalized classification network at each user for activity prediction. In order to boost the representation ability of the embedding network, we treat the HAR problem at each user as a different task and train the shared embedding network through a Model-Agnostic Meta-learning framework, such that the embedding network can generalize to any individual user. Personalization is further achieved on top of the robustly learned representations in an adaptation procedure. We conducted extensive experiments based on two publicly available HAR datasets as well as a newly created HAR dataset. Results verify that Meta-HAR is effective at maintaining high test accuracies for individual users, including new users, and significantly outperforms several baselines, including Federated Averaging, Reptile and even centralized learning in certain cases.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods. Code has been made available at https://github.com/google-research/crest.
311 - H.D. Nguyen , K.P. Tran , X. Zeng 2019
Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا