Do you want to publish a course? Click here

The Evolution of the IR Luminosity Function and Dust-obscured Star Formation in the Last 13 Billion Years

134   0   0.0 ( 0 )
 Added by Jorge Zavala
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results from the 2mm Mapping Obscuration to Reionization (MORA) survey, the largest ALMA contiguous blank-field survey to-date with a total area of 184 sq. arcmin and the only at 2mm to search for dusty star-forming galaxies (DSFGs). We use the 13 sources detected above 5sigma to estimate the first ALMA galaxy number counts at this wavelength. These number counts are then combined with the state-of-the-art galaxy number counts at 1.2mm and 3mm and with a backward evolution model to place constraints on the evolution of the IR luminosity function and dust-obscured star formation in the last 13 billion years. Our results suggest a steep redshift evolution on the space density of DSFGs and confirm the flattening of the IR luminosity function at faint luminosities, with a slope of $alpha_{LF} = -0.42^{+0.02}_{-0.04}$. We conclude that the dust-obscured component, which peaks at z=2-2.5, has dominated the cosmic history of star formation for the past ~12 billion years, back to z~4. At z=5, the dust-obscured star formation is estimated to be ~35% of the total star formation rate density and decreases to 25%-20% at z=6-7, implying a minor contribution of dust-enshrouded star formation in the first billion years of the Universe. With the dust-obscured star formation history constrained up to the end of the epoch of reionization, our results provide a benchmark to test galaxy formation models, to study the galaxy mass assembly history, and to understand the dust and metal enrichment of the Universe at early times.



rate research

Read More

We compare the star formation (SF) activity in cluster galaxies to the field from z=0.3-1.5 using $Herschel$ SPIRE 250$mu$m imaging. We utilize 274 clusters from the IRAC Shallow Cluster Survey (ISCS) selected as rest-frame near-infrared overdensities over the 9 square degree Bootes field . This analysis allows us to quantify the evolution of SF in clusters over a long redshift baseline without bias against active cluster systems. Using a stacking analysis, we determine the average star formation rates (SFRs) and specific-SFRs (SSFR=SFR/M$_{star}$) of stellar mass-limited (M>1.3x10$^{10}$ M$_{odot}$), statistical samples of cluster and field galaxies, probing both the star forming and quiescent populations. We find a clear indication that the average SF in cluster galaxies is evolving more rapidly than in the field, with field SF levels at z>1.2 in the cluster cores (r<0.5 Mpc), in good agreement with previous ISCS studies. By quantifying the SF in cluster and field galaxies as an exponential function of cosmic time, we determine that cluster galaxies are evolving ~2 times faster than the field. Additionally, we see enhanced SF above the field level at z~1.4 in the cluster outskirts (r>0.5 Mpc). These general trends in the cluster cores and outskirts are driven by the lower mass galaxies in our sample. Blue cluster galaxies have systematically lower SSFRs than blue field galaxies, but otherwise show no strong differential evolution with respect to the field over our redshift range. This suggests that the cluster environment is both suppressing the star formation in blue galaxies on long time-scales and rapidly transitioning some fraction of blue galaxies to the quiescent galaxy population on short time-scales. We argue that our results are consistent with both strangulation and ram pressure stripping acting in these clusters, with merger activity occurring in the cluster outskirts.
117 - L. Dunne , H. Gomez , E. da Cunha 2010
We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-ATLAS. The sample consists of galaxies selected at 250{mu}m which have reliable counterparts from SDSS at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single temperature grey-body model for the spectral energy distribution and also using a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z = 0.4 - 0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about 3-4 times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption timescale together with either a more top-heavy IMF, efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall ISM mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.
137 - Kathy L Cooksey 2010
We identified 24 SiIV absorption systems with z <~ 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically detect candidates. After visual inspection, we defined a sample of 20 definite (group G = 1) and 4 highly-likely (G = 2) doublets with rest equivalent widths W_r for both lines detected at > 3 sigma. The absorber line density of the G = 1 doublets was dN_SiIV/dX = 1.4+0.4/-0.3 for log N(Si+3) > 12.9. The best-fit power law to the G = 1 frequency distribution of column densities f(N(Si+3)) had normalization k = (1.2+0.5/-0.4) x 10^-14 cm2 and slope alpha = -1.6+0.3/-0.3. Using the power-law model of f(N(Si+3)), we measured the Si+3 mass density relative to the critical density: Omega(Si+3) = (3.7+2.8/-1.7) x 10^-8 for 13 < log N(Si+3) < 15. From Monte Carlo sampling of the distributions, we estimated our value to be a factor of 4.8+3.0/-1.9 higher than the 2 < z < 4.5 <Omega(Si+3)>. From a simple linear fit to Omega(Si+3) over the age of the Universe, we estimated a slow and steady increase from z = 5.5 --> 0 with dOmega/dt_age = (0.61+/-0.23) x 10^-8 Gyr^-1. We compared our ionic ratios N(Si+3)/N(C+3) to a 2 < z < 4.5 sample and concluded, from survival analysis, that the two populations are similar, with median <N(Si+3)/N(C+3)> = 0.16.
An analytical approach is proposed to study the evolution of the star-forming galaxy (SFG) main sequence (MS) and the fraction of dust-obscured SF up to $zsim4$. Far-ultraviolet (FUV) and infrared (IR) star formation rates, SFRs, are described as conditional probability functions of $M_{ast}$. We convolve them with the galaxy stellar mass function (GSMF) of SFGs to derive the FUV and IR LFs. The 2 SF modes formalism is used to describe starburst galaxies. By fitting observed FUV and IR LFs, the parametrization of SFR$_{rm FUV}-M_{ast}$ and SFR$_{rm IR}-M_{ast}$ are constrained. Our derived SFR$_{rm FUV+IR}-M_{ast}$ reproduces the evolution of the MS as compared to other observational inferences. At any redshift, we find that the sSFR$_{rm FUV+IR}-M_{ast}$ relation for MS SFGs approaches to a power law at the high-mass end. At lower masses, it bends and eventually the slope sign changes from negative to positive at very low masses. At $zsim0$, this change of sign is at $M_{ast}sim5times10^{8}{rm M}_{odot}$ close to dust-obscured SF regime, $M_{ast}sim6times10^{8}{rm M}_{odot}$. The slope sign change is related to the knee of the FUV LF. Our derived dust-obscured fractions agree with previous determinations at $0leq zleq2.5$. Dust-obscured fractions depend strongly on mass with almost no dependence with redshift at $zgtrsim1.2$. At $zlesssim0.75$ high-mass galaxies become more transparent compared to their high redshift counterparts. On the opposite, low- and intermediate-mass galaxies have become more obscured by dust. The joint evolution of the GSMF and the FUV and IR LFs is a promising approach to study mass growth and dust formation/destruction mechanisms.
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field deep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for faint (M_UV=-18) and bright (M_UV < -21) galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5<z<8.5, with >1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift. We measure the evolution of the cosmic star-formation rate density, correcting for dust attenuation, and find that it declines as (1+z)^(-4.3 +/- 0.5) at z>4, consistent with observations at z>9. Our observations are consistent with a reionization history that starts at z>10, completes at z>6, and reaches a midpoint (x_HII = 0.5) at 6.7<z<9.4. Finally, our observations predict that the abundance of bright z=9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z~10 galaxies. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا