Do you want to publish a course? Click here

Target Detection and Segmentation in Circular-Scan Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional Encoder-Decoders

116   0   0.0 ( 0 )
 Added by Isaac Sledge
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a saliency-based, multi-target detection and segmentation framework for multi-aspect, semi-coherent imagery formed from circular-scan, synthetic-aperture sonar (CSAS). Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN). The encoder portion extracts features from one or more CSAS images of the targets. These features are then split off and fed into multiple decoders that perform pixel-level classification on the extracted features to roughly mask the target in an unsupervised-trained manner and detect foreground and background pixels in a supervised-trained manner. Each of these target-detection estimates provide different perspectives as to what constitute a target. These opinions are cascaded into a deep-parsing network to model contextual and spatial constraints that help isolate targets better than either solution estimate alone. We evaluate our framework using real-world CSAS data with five broad target classes. Since we are the first to consider both CSAS target detection and segmentation, we adapt existing image and video-processing network topologies from the literature for comparative purposes. We show that our framework outperforms supervised deep networks. It greatly outperforms state-of-the-art unsupervised approaches for diverse target and seafloor types.



rate research

Read More

Recent progress in synthetic aperture sonar (SAS) technology and processing has led to significant advances in underwater imaging, outperforming previously common approaches in both accuracy and efficiency. There are, however, inherent limitations to current SAS reconstruction methodology. In particular, popular and efficient Fourier domain SAS methods require a 2D interpolation which is often ill conditioned and inaccurate, inevitably reducing robustness with regard to speckle and inaccurate sound-speed estimation. To overcome these issues, we propose using the frame theoretic convolution gridding (FTCG) algorithm to handle the non-uniform Fourier data. FTCG extends upon non-uniform fast Fourier transform (NUFFT) algorithms by casting the NUFFT as an approximation problem given Fourier frame data. The FTCG has been show to yield improved accuracy at little more computational cost. Using simulated data, we outline how the FTCG can be used to enhance current SAS processing.
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task. Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain. Furthermore, in patch-wise feature analysis, some noisy features in the marginal region may be introduced. To tackle the above two challenges, we propose a Dual-Domain Network. Specifically, we take features from the discrete cosine transform domain into consideration and the reshaped DCT coefficients are integrated into the proposed model as the frequency domain branch. Feature representations from both frequency and spatial domain are exploited to alleviate the speckle noise. In addition, we further propose a multi-region convolution module, which emphasizes the central region of each patch. The contextual information and central region features are modeled adaptively. The experimental results on three SAR datasets demonstrate the effectiveness of the proposed model. Our codes are available at https://github.com/summitgao/SAR_CD_DDNet.
Seismic image analysis plays a crucial role in a wide range of industrial applications and has been receiving significant attention. One of the essential challenges of seismic imaging is detecting subsurface salt structure which is indispensable for identification of hydrocarbon reservoirs and drill path planning. Unfortunately, exact identification of large salt deposits is notoriously difficult and professional seismic imaging often requires expert human interpretation of salt bodies. Convolutional neural networks (CNNs) have been successfully applied in many fields, and several attempts have been made in the field of seismic imaging. But the high cost of manual annotations by geophysics experts and scarce publicly available labeled datasets hinder the performance of the existing CNN-based methods. In this work, we propose a semi-supervised method for segmentation (delineation) of salt bodies in seismic images which utilizes unlabeled data for multi-round self-training. To reduce error amplification during self-training we propose a scheme which uses an ensemble of CNNs. We show that our approach outperforms state-of-the-art on the TGS Salt Identification Challenge dataset and is ranked the first among the 3234 competing methods.
Many researches have been carried out for change detection using temporal SAR images. In this paper an algorithm for change detection using SAR videos has been proposed. There are various challenges related to SAR videos such as high level of speckle noise, rotation of SAR image frames of the video around a particular axis due to the circular movement of airborne vehicle, non-uniform back scattering of SAR pulses. Hence conventional change detection algorithms used for optical videos and SAR temporal images cannot be directly utilized for SAR videos. We propose an algorithm which is a combination of optical flow calculation using Lucas Kanade (LK) method and blob detection. The developed method follows a four steps approach: image filtering and enhancement, applying LK method, blob analysis and combining LK method with blob analysis. The performance of the developed approach was tested on SAR videos available on Sandia National Laboratories website and SAR videos generated by a SAR simulator.
Automated segmentation can assist radiotherapy treatment planning by saving manual contouring efforts and reducing intra-observer and inter-observer variations. The recent development of deep learning approaches has revoluted medical data processing, including semantic segmentation, by dramatically improving performance. However, training effective deep learning models usually require a large amount of high-quality labeled data, which are often costly to collect. We developed a novel semi-supervised adversarial deep learning approach for 3D pelvic CT image semantic segmentation. Unlike supervised deep learning methods, the new approach can utilize both annotated and un-annotated data for training. It generates un-annotated synthetic data by a data augmentation scheme using generative adversarial networks (GANs). We applied the new approach to segmenting multiple organs in male pelvic CT images, where CT images without annotations and GAN-synthesized un-annotated images were used in semi-supervised learning. Experimental results, evaluated by three metrics (Dice similarity coefficient, average Hausdorff distance, and average surface Hausdorff distance), showed that the new method achieved either comparable performance with substantially fewer annotated images or better performance with the same amount of annotated data, outperforming the existing state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا