No Arabic abstract
Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo search algorithm for single player games. In this paper we propose to modify NRPA in order to improve the stability of the algorithm. Experiments show it improves the algorithm for different application domains: SameGame, Traveling Salesman with Time Windows and Expression Discovery.
In this paper we consider infinite horizon discounted dynamic programming problems with finite state and control spaces, partial state observations, and a multiagent structure. We discuss and compare algorithms that simultaneously or sequentially optimize the agents controls by using multistep lookahead, truncated rollout with a known base policy, and a terminal cost function approximation. Our methods specifically address the computational challenges of partially observable multiagent problems. In particular: 1) We consider rollout algorithms that dramatically reduce required computation while preserving the key cost improvement property of the standard rollout method. The per-step computational requirements for our methods are on the order of $O(Cm)$ as compared with $O(C^m)$ for standard rollout, where $C$ is the maximum cardinality of the constraint set for the control component of each agent, and $m$ is the number of agents. 2) We show that our methods can be applied to challenging problems with a graph structure, including a class of robot repair problems whereby multiple robots collaboratively inspect and repair a system under partial information. 3) We provide a simulation study that compares our methods with existing methods, and demonstrate that our methods can handle larger and more complex partially observable multiagent problems (state space size $10^{37}$ and control space size $10^{7}$, respectively). Finally, we incorporate our multiagent rollout algorithms as building blocks in an approximate policy iteration scheme, where successive rollout policies are approximated by using neural network classifiers. While this scheme requires a strictly off-line implementation, it works well in our computational experiments and produces additional significant performance improvement over the single online rollout iteration method.
The Ladder of Causation describes three qualitatively different types of activities an agent may be interested in engaging in, namely, seeing (observational), doing (interventional), and imagining (counterfactual) (Pearl and Mackenzie, 2018). The inferential challenge imposed by the causal hierarchy is that data is collected by an agent observing or intervening in a system (layers 1 and 2), while its goal may be to understand what would have happened had it taken a different course of action, contrary to what factually ended up happening (layer 3). While there exists a solid understanding of the conditions under which cross-layer inferences are allowed from observations to interventions, the results are somewhat scarcer when targeting counterfactual quantities. In this paper, we study the identification of nested counterfactuals from an arbitrary combination of observations and experiments. Specifically, building on a more explicit definition of nested counterfactuals, we prove the counterfactual unnesting theorem (CUT), which allows one to map arbitrary nested counterfactuals to unnested ones. For instance, applications in mediation and fairness analysis usually evoke notions of direct, indirect, and spurious effects, which naturally require nesting. Second, we introduce a sufficient and necessary graphical condition for counterfactual identification from an arbitrary combination of observational and experimental distributions. Lastly, we develop an efficient and complete algorithm for identifying nested counterfactuals; failure of the algorithm returning an expression for a query implies it is not identifiable.
We tackle the issue of finding a good policy when the number of policy updates is limited. This is done by approximating the expected policy reward as a sequence of concave lower bounds which can be efficiently maximized, drastically reducing the number of policy updates required to achieve good performance. We also extend existing methods to negative rewards, enabling the use of control variates.
We investigate the geometry of optimal memoryless time independent decision making in relation to the amount of information that the acting agent has about the state of the system. We show that the expected long term reward, discounted or per time step, is maximized by policies that randomize among at most $k$ actions whenever at most $k$ world states are consistent with the agents observation. Moreover, we show that the expected reward per time step can be studied in terms of the expected discounted reward. Our main tool is a geometric version of the policy improvement lemma, which identifies a polyhedral cone of policy changes in which the state value function increases for all states.
Hierarchical reinforcement learning is a promising approach to tackle long-horizon decision-making problems with sparse rewards. Unfortunately, most methods still decouple the lower-level skill acquisition process and the training of a higher level that controls the skills in a new task. Leaving the skills fixed can lead to significant sub-optimality in the transfer setting. In this work, we propose a novel algorithm to discover a set of skills, and continuously adapt them along with the higher level even when training on a new task. Our main contributions are two-fold. First, we derive a new hierarchical policy gradient with an unbiased latent-dependent baseline, and we introduce Hierarchical Proximal Policy Optimization (HiPPO), an on-policy method to efficiently train all levels of the hierarchy jointly. Second, we propose a method for training time-abstractions that improves the robustness of the obtained skills to environment changes. Code and results are available at sites.google.com/view/hippo-rl