Do you want to publish a course? Click here

Fermion masses and mixings in a $U(1)_X$ model based on the $Sigma(18)$ discrete symmetry

132   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We have built a renormalizable $U(1)_X$ model with a $Sigma (18)times Z_4$ symmetry, whose spontaneous breaking yields the observed SM fermion masses and fermionic mixing parameters. The tiny masses of the light active neutrinos are produced by the type I seesaw mechanism mediated by very heavy right handed Majorana neutrinos. To the best of our knowledge, this model is the first implementation of the $Sigma (18)$ flavor symmetry in a renormalizable $U(1)_X$ model. Our model allows a successful fit for the SM fermion masses, fermionic mixing angles and CP phases for both quark and lepton sectors. The obtained values for the physical observables of both quark and lepton sectors are in accordance with the experimental data. We obtain an effective neutrino mass parameter of $langle m_{ee}rangle=1.51times 10^{-3}, mathrm{eV}$ for normal ordering and $langle m_{ee}rangle =4.88times 10^{-2} , mathrm{eV}$ for inverted ordering which are well consistent with the recent experimental limits on neutrinoless double beta decay.



rate research

Read More

We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of A4. The top quark Yukawa interaction is present at the renormalizable level in the superpotential while all the other Yukawa interactions arise only at higher orders. We study the Higgs potential and show that it can potentially solve the so called vacuum alignment problem. The leading order predictions are not spoiled by subleading corrections.
We propose a predictive model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, which is supplemented by the $D_4$ family symmetry and several auxiliary cyclic symmetries whose spontaneous breaking produces the observed SM fermion mass and mixing pattern. The masses of the light active neutrinos are produced by an inverse seesaw mechanism mediated by three right handed Majorana neutrinos. To the best of our knowledge the model corresponds to the first implementation of the $D_4$ family symmetry in a $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ theory with three right handed Majorana neutrinos and inverse seesaw mechanism. Our proposed model successfully accommodates the experimental values of the SM fermion mass and mixing parameters, the muon anomalous magnetic moment as well as the Higgs diphoton decay rate constraints. The consistency of our model with the muon anomalous magnetic moment requires electrically charged scalar masses at the sub TeV scale.
In a recently proposed multi-Higgs extension of the standard model in which discrete symmetries, $A_4$ and $Z_3$ are imposed we show that, after accommodating the fermion masses and the mixing matrices in the charged currents, the mixing matrices in the neutral currents induced by neutral scalars are numerically obtained. However, the flavor changing neutral currents are under control mainly by mixing and/or mass suppressions in the neutral scalar sector.
208 - K.C. Chou , Y.L. Wu 2000
CP violation, fermion masses and mixing angles including that of neutrinos are studied in an SUSY SO(10)$times Delta (48)times$ U(1) model. The nonabelian SU(3) discrete family symmetry $Delta(48)$ associated with a simple scheme of U(1) charge assignment on various fields concerned in superpotential leads to unique Yukawa coupling matrices with zero textures. Thirteen parameters involving masses and mixing angles in the quark and charged lepton sector are successfully predicted by only four parameters. The masses and mixing angles for the neutrino sector could also be predicted by constructing an appropriate heavy Majorana neutrino mass matrix without involving new parameters. It is found that the atmospheric neutrino deficit, the mass limit put by hot dark matter and the LSND $bar{ u}_{mu} to bar{ u}_{e}$ events may simultaneously be explained, but solar neutrino puzzle can be solved only by introducing a sterile neutrino. An additional parameter is added to obtain the mass and mixing of the sterile neutrino. The hadronic parameters $B_{K}$ and $f_{B}sqrt{B}$ are extracted from the observed $K^{0}$-$bar{K}^{0}$ and $B^{0}$-$bar{B}^{0}$ mixings respectively. The direct CP violation ($epsilon/epsilon$) in kaon decays and the three angles $alpha$, $beta$ and $gamma$ of the unitarity triangle in the CKM matrix are also presented. More precise measurements of $alpha_{s}(M_{Z})$, $|V_{cb}|$, $|V_{ub}/V_{cb}|$, $m_{t}$, as well as various CP violation and neutrino oscillation experiments will provide an important test for the present model and guide us to a more fundamental theory.
We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا