No Arabic abstract
Most planetary radar applications require recording of complex voltages at sampling rates of up to 20 MHz. I describe the design and implementation of a sampling system that has been installed at the Arecibo Observatory, Goldstone Solar System Radar, and Green Bank Telescope. After many years of operation, these data-taking systems have enabled the acquisition of hundreds of data sets, many of which still await publication.
Planetary radars have obtained unique science measurements about solar system bodies and they have provided orbit determinations allowing spacecraft to be navigated throughout the solar system. Notable results have been on Venus, Earths twin, and small bodies, which are the constituents of the Suns debris disk. Together, these results have served as ground truth from the solar system for studies of extrasolar planets. The Nations planetary radar infrastructure, indeed the worlds planetary radar infrastructure, is based on astronomical and deep space telecommunications infrastructure, namely the radar transmitters at the Arecibo Observatory and the Goldstone Solar System Radar, part of NASAs Deep Space Network, along with the Green Bank Telescope as a receiving element. This white paper summarizes the state of this infrastructure and potential technical developments that should be sustained in order to enable continued studies of solar system bodies for comparison and contrast with extrasolar planetary systems. Because the planetary radar observations leverage existing infrastructure largely developed for other purposes, only operations and maintenance funding is required, though modest investments could yield more reliable systems; in the case of the Green Bank Telescope, additional funding for operations is required.
Planetary spatial data returned by spacecraft, including images and higher-order products such as mosaics, controlled basemaps, and digital elevation models (DEMs), are of critical importance to NASA, its commercial partners and other space agencies. Planetary spatial data are an essential component of basic scientific research and sustained planetary exploration and operations. The Planetary Data System (PDS) is performing the essential job of archiving and serving these data, mostly in raw or calibrated form, with less support for higher-order, more ready-to-use products. However, many planetary spatial data remain not readily accessible to and/or usable by the general science user because particular skills and tools are necessary to process and interpret them from the raw initial state. There is a critical need for planetary spatial data to be more accessible and usable to researchers and stakeholders. A Planetary Spatial Data Infrastructure (PSDI) is a collection of data, tools, standards, policies, and the people that use and engage with them. A PSDI comprises an overarching support system for planetary spatial data. PSDIs (1) establish effective plans for data acquisition; (2) create and make available higher-order products; and (3) consider long-term planning for correct data acquisition, processing and serving (including funding). We recommend that Planetary Spatial Data Infrastructures be created for all bodies and key regions in the Solar System. NASA, with guidance from the planetary science community, should follow established data format standards to build foundational and framework products and use those to build and apply PDSIs to all bodies. Establishment of PSDIs is critical in the coming decade for several locations under active or imminent exploration, and for all others for future planning and current scientific analysis.
Gravitational waves have opened a new observational window through which some of the most exotic objects in the Universe, as well as some of the secrets of gravitation itself, can now be revealed. Among all these new discoveries, we recently demonstrated [N. Tamanini & C. Danielski, Nat. Astron., 3(9), 858 (2019)] that space-based gravitational wave observations will have the potential to detect a new population of massive circumbinary exoplanets everywhere inside our Galaxy. In this essay we argue that these circumbinary planetary systems can also be detected outside the Milky Way, in particular within its satellite galaxies. Space-based gravitational wave observations might thus constitute the mean to detect the first extra-galactic planetary system, a target beyond the reach of standard electromagnetic searches.
The Planetary Systems Imager (PSI) is a proposed instrument for the Thirty Meter Telescope (TMT) that provides an extreme adaptive optics (AO) correction to a multi-wavelength instrument suite optimized for high contrast science. PSIs broad range of capabilities, spanning imaging, polarimetry, integral field spectroscopy, and high resolution spectroscopy from 0.6-5 microns, with a potential channel at 10 microns, will enable breakthrough science in the areas of exoplanet formation and evolution. Here, we present a preliminary optical design and performance analysis toolset for the 2-5 microns component of the PSI AO system, which must deliver the wavefront quality necessary to support infrared high contrast science cases. PSI-AO is a two-stage system, with an initial deformable mirror and infrared wavefront sensor providing a common wavefront correction to all PSI science instruments followed by a dichroic that separates PSI-Red (2-5 microns) from PSI-Blue (0.5-1.8 microns). To meet the demands of visible-wavelength high contrast science, the PSI-Blue arm will include a second deformable mirror and a visible-wavelength wavefront sensor. In addition to an initial optical design of the PSI-Red AO system, we present a preliminary set of tools for an end-to-end AO simulation that in future work will be used to demonstrate the planet-to-star contrast ratios achievable with PSI-Red.
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency between them and different in function to those used by ecologists. In this white paper, we suggest a mass-energy habitability model as an example of how to adapt and expand the models used by ecologists to the astrobiology field. We propose to implement these models into a NASA Habitability Standard (NHS) to standardize the habitability objectives of planetary missions. These standards will help to compare and characterize potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science. The synergy between the methods used by ecologists and astrobiologists will help to integrate and expand our understanding of the habitability of Earth, the Solar System, and exoplanets.