Do you want to publish a course? Click here

Habitability Models for Planetary Sciences

388   0   0.0 ( 0 )
 Added by Abel Mendez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency between them and different in function to those used by ecologists. In this white paper, we suggest a mass-energy habitability model as an example of how to adapt and expand the models used by ecologists to the astrobiology field. We propose to implement these models into a NASA Habitability Standard (NHS) to standardize the habitability objectives of planetary missions. These standards will help to compare and characterize potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science. The synergy between the methods used by ecologists and astrobiologists will help to integrate and expand our understanding of the habitability of Earth, the Solar System, and exoplanets.



rate research

Read More

Small bodies, the unaccreted leftovers of planetary formation, are often mistaken for the leftovers of planetary science in the sense that they are everything else after the planets and their satellites (or sometimes just their regular satellites) are accounted for. This mistaken view elides the great diversity of compositions, histories, and present-day conditions and processes found in the small bodies, and the interdisciplinary nature of their study. Understanding small bodies is critical to planetary science as a field, and we urge planetary scientists and our decision makers to continue to support science-based mission selections and to recognize that while small bodies have been grouped together for convenience, the diversity of these objects in terms of composition, mass, differentiation, evolution, activity, dynamical state, physical structure, thermal environment, thermal history, and formation vastly exceeds the observed variability in the major planets and their satellites. Treating them as a monolithic group with interchangeable members does a grave injustice to the range of fundamental questions they address. We advocate for a deep and ongoing program of missions, telescopic observations, R and A funding, and student support that respects this diversity.
The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey.
215 - M. Guedel , R. Dvorak , N. Erkaev 2014
With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from geophysical processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point in time. Furthermore, dynamical effects in planetary systems and transport of water to Earth-like planets set fundamentally important constraints. We will review these astrophysical conditions for habitability under the crucial aspects of the long-term evolution of stellar properties, the consequent extreme conditions in the early evolutionary phase of planetary systems, and the important interplay between properties of the host star and its planets.
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine if environments are habitable or not, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help to improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.
150 - Laura Silva 2016
In an effort to derive temperature based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for their active metabolism and reproduction are bracketed by the temperature interval 0C<T<50C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We propose a habitability index for complex life, h050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0C<T<50C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h050 as a function of planet insolation S, and atmospheric columnar mass Natm, for a few earth-like atmospheric compositions. By displaying h050 as a function of S and Natm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life HZ is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life HZ is significantly narrower than the HZ of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and Natm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا