No Arabic abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has caused tremendous amount of deaths and a devastating impact on the economic development all over the world. Thus, it is paramount to control its further transmission, for which purpose it is necessary to find the mechanism of its transmission process and evaluate the effect of different control strategies. To deal with these issues, we describe the transmission of COVID-19 as an explosive Markov process with four parameters. The state transitions of the proposed Markov process can clearly disclose the terrible explosion and complex heterogeneity of COVID-19. Based on this, we further propose a simulation approach with heterogeneous infections. Experimentations show that our approach can closely track the real transmission process of COVID-19, disclose its transmission mechanism, and forecast the transmission under different non-drug intervention strategies. More importantly, our approach can helpfully develop effective strategies for controlling COVID-19 and appropriately compare their control effect in different countries/cities.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
When the Covid-19 pandemic enters dangerous new phase, whether and when to take aggressive public health interventions to slow down the spread of COVID-19. To develop the artificial intelligence (AI) inspired methods for real-time forecasting and evaluating intervention strategies to curb the spread of Covid-19 in the World. A modified auto-encoder for modeling the transmission dynamics of the epidemics is developed and applied to the surveillance data of cumulative and new Covid-19 cases and deaths from WHO, as of March 16, 2020. The average errors of 5-step forecasting were 2.5%. The total peak number of cumulative cases and new cases, and the maximum number of cumulative cases in the world with later intervention (comprehensive public health intervention is implemented 4 weeks later) could reach 75,249,909, 10,086,085, and 255,392,154, respectively. The case ending time was January 10, 2021. However, the total peak number of cumulative cases and new cases and the maximum number of cumulative cases in the world with one week later intervention were reduced to 951,799, 108,853 and 1,530,276, respectively. Duration time of the Covid-19 spread would be reduced from 356 days to 232 days. The case ending time was September 8, 2020. We observed that delaying intervention for one month caused the maximum number of cumulative cases to increase 166.89 times, and the number of deaths increase from 53,560 to 8,938,725. We will face disastrous consequences if immediate action to intervene is not taken.
Since December 2019, A novel coronavirus (2019-nCoV) has been breaking out in China, which can cause respiratory diseases and severe pneumonia. Mathematical and empirical models relying on the epidemic situation scale for forecasting disease outbreaks have received increasing attention. Given its successful application in the evaluation of infectious diseases scale, we propose a Susceptible-Undiagnosed-Infected-Removed (SUIR) model to offer the effective prediction, prevention, and control of infectious diseases. Our model is a modified susceptible-infected-recovered (SIR) model that injects undiagnosed state and offers pre-training effective reproduction number. Our SUIR model is more precise than the traditional SIR model. Moreover, we combine domain knowledge of the epidemic to estimate effective reproduction number, which addresses the initial susceptible population of the infectious disease model approach to the ground truth. These findings have implications for the forecasting of epidemic trends in COVID-19 as these could help the growth of estimating epidemic situation.
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
Epidemics are a serious public health threat, and the resources for mitigating their effects are typically limited. Decision-makers face challenges in forecasting the demand for these resources as prior information about the disease is often not available, the behaviour of the disease can periodically change (either naturally or as a result of public health policies) and can differ by geographical region. In this work, we discuss a model that is suitable for short-term real-time supply and demand forecasting during emerging outbreaks without having to rely on demographic information. We propose a data-driven mixed-integer programming (MIP) resource allocation model that assigns available resources to maximize a notion of fairness among the resource-demanding entities. Numerical results from applying our MIP model to a COVID-19 Convalescent Plasma (CCP) case study suggest that our approach can help balance the supply and demand of limited products such as CCP and minimize the unmet demand ratios of the demand entities.