Do you want to publish a course? Click here

Mechanisms behind large Gilbert damping anisotropies

83   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method with which to calculate the Gilbert damping parameter from a real-space electronic structure method is reported here. The anisotropy of the Gilbert damping with respect to the magnetic moment direction and local chemical environment is calculated for bulk and surfaces of Fe$_{50}$Co$_{50}$ alloys from first principles electronic structure in a real space formulation. The size of the damping anisotropy for Fe$_{50}$Co$_{50}$ alloys is demonstrated to be significant. Depending on details of the simulations, it reaches a maximum-minimum damping ratio as high as 200%. Several microscopic origins of the strongly enhanced Gilbert damping anisotropy have been examined, where in particular interface/surface effects stand out, as do local distortions of the crystal structure. Although theory does not reproduce the experimentally reported high ratio of 400% [Phys. Rev. Lett. 122, 117203 (2019)], it nevertheless identifies microscopic mechanisms that can lead to huge damping anisotropies.



rate research

Read More

The modification of the magnetization dissipation or Gilbert damping caused by an inhomogeneous magnetic structure and expressed in terms of a wave vector dependent tensor $underline{alpha}(vec{q})$ is investigated by means of linear response theory. A corresponding expression for $underline{alpha}(vec{q})$ in terms of the electronic Green function has been developed giving in particular the leading contributions to the Gilbert damping linear and quadratic in $q$. Numerical results for realistic systems are presented that have been obtained by implementing the scheme within the framework of the fully relativistic KKR (Korringa-Kohn-Rostoker) band structure method. Using the multilayered system (Cu/Fe$_{1-x}$Co$_x$/Pt)$_n$ as an example for systems without inversion symmetry we demonstrate the occurrence of non-vanishing linear contributions. For the alloy system bcc Fe$_{1-x}$Co$_x$ having inversion symmetry, on the other hand, only the quadratic contribution is non-zero. As it is shown, this quadratic contribution does not vanish even if the spin-orbit coupling is suppressed, i.e. it is a direct consequence of the non-collinear spin configuration.
Thin highly textured Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si ($0 leq$ x $leq 1$) films were prepared on MgO (001) substrates by magnetron co-sputtering. The magneto-optic Kerr effect (MOKE) and ferromagnetic resonance (FMR) measurements were used to investigate the composition dependence of the magnetization, the magnetic anisotropy, the gyromagnetic ratio and the relaxation of the films. The effective magnetization for the thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films, determined by FMR measurements, are consistent with the Slater Pauling prediction. Both MOKE and FMR measurements reveal a pronounced fourfold anisotropy distribution for all films. In addition we found a strong influence of the stoichiometry on the anisotropy as the cubic anisotropy strongly increases with increasing Fe concentration. The gyromagnetic ratio is only weakly dependent on the composition. We find low Gilbert damping parameters for all films with values down to $0.0012pm0.00012$ for Fe$_{1.75}$Co$_{1.25}$Si. The effective damping parameter for Co$_2$FeSi is found to be $0.0018pm 0.0004$. We also find a pronounced anisotropic relaxation, which indicates significant contributions of two-magnon scattering processes that is strongest along the easy axes of the films. This makes thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films ideal materials for the application in STT-MRAM devices.
Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 r{A})/Pt(3 r{A})]${times 6}$ multilayers whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained despite a magneto-crystalline anisotropy as large as $10^6~textrm{J/m}^3$. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co$_{50}$Fe$_{50}$ thin film with a maximum-minimum damping ratio of 400 %, determined by broadband spin-torque as well as inductive ferromagnetic resonance. We conclude that the origin of this damping anisotropy is the variation of the spin orbit coupling for different magnetization orientations in the cubic lattice, which is further corroborate from the magnitude of the anisotropic magnetoresistance in Co$_{50}$Fe$_{50}$.
112 - William K. Peria 2019
We report on broadband ferromagnetic resonance linewidth measurements performed on epitaxial Heusler thin films. A large and anisotropic two-magnon scattering linewidth broadening is observed for measurements with the magnetization lying in the film plane, while linewidth measurements with the magnetization saturated perpendicular to the sample plane reveal low Gilbert damping constants of $(1.5pm0.1)times 10^{-3}$, $(1.8pm0.2)times 10^{-3}$, and $<8times 10^{-4}$ for Co$_2$MnSi/MgO, Co$_2$MnAl/MgO, and Co$_2$FeAl/MgO, respectively. The in-plane measurements are fit to a model combining Gilbert and two-magnon scattering contributions to the linewidth, revealing a characteristic disorder lengthscale of 10-100 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا