No Arabic abstract
Being fundamentally a non-equilibrium process, synchronization comes with unavoidable energy costs and has to be maintained under the constraint of limited resources. Such resource constraints are often reflected as a finite coupling budget available in a network to facilitate interaction and communication. Here, we show that introducing temporal variation in the network structure can lead to efficient synchronization even when stable synchrony is impossible in any static network under the given budget, thereby demonstrating a fundamental advantage of temporal networks. The temporal networks generated by our open-loop design are versatile in the sense of promoting synchronization for systems with vastly different dynamics, including periodic and chaotic dynamics in both discrete-time and continuous-time models. Furthermore, we link the dynamic stabilization effect of the changing topology to the curvature of the master stability function, which provides analytical insights into synchronization on temporal networks in general. In particular, our results shed light on the effect of network switching rate and explain why certain temporal networks synchronize only for intermediate switching rate.
We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinsons disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinsons disease.
Symmetry breaking--the phenomenon in which the symmetry of a system is not inherited by its stable states--underlies pattern formation, superconductivity, and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking (CSB), a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be nonidentical in order to exhibit identical behavior, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably nonidentical and that CSB persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behavior.
Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy.
Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically reproducible correlations that reflect underlying internal or environmental processes such as synaptic noise or atmospheric turbulence. This raises the practically and biophysically relevant of question whether and how noise-filtering can be hard-wired directly into a networks architecture. By considering generic phase oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become more correlated in space or time, optimal network architectures become sparser and more hierarchically organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete guiding principles for designing more robust and efficient power grids and sensor networks.
Rhythmogenesis, which is critical for many biological functions, involves a transition to coherent activity through cell-cell communication. In the absence of centralized coordination by specialized cells (pacemakers), competing oscillating clusters impede this global synchrony. We show that spatial symmetry-breaking through a frequency gradient results in the emergence of localized wave sources driving system-wide activity. Such gradients, arising through heterogeneous inter-cellular coupling, may explain directed rhythmic activity during labor in the uterus despite the absence of pacemakers.