Do you want to publish a course? Click here

Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinsons Disease and Deep Brain Stimulation

131   0   0.0 ( 0 )
 Added by Jonathan Touboul
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinsons disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinsons disease.

rate research

Read More

Deep brain stimulation (DBS) is an effective therapy as an alternative to pharmaceutical treatments for Parkinsons disease (PD). Aside from factors such as instrumentation, treatment plans, and surgical protocols, the success of the procedure depends heavily on the accurate placement of the electrode within the optimal therapeutic targets while avoiding vital structures that can cause surgical complications and adverse neurologic effects. While specific surgical techniques for DBS can vary, interventional guidance with medical imaging has greatly contributed to the development, outcomes, and safety of the procedure. With rapid development in novel imaging techniques, computational methods, and surgical navigation software, as well as growing insights into the disease and mechanism of action of DBS, modern image guidance is expected to further enhance the capacity and efficacy of the procedure in treating PD. This article surveys the state-of-the-art techniques in image-guided DBS surgery to treat PD, and discuss their benefits and drawbacks, as well as future directions on the topic.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
348 - C.J. Tessone , A. Scire , R. Toral 2005
We develop a theory for the emergence of global firings in non-identical excitable systems subject to noise. Three different dynamical regimes arise: sub-threshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for global firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.
Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable properties of the nodes and the global network topology. Here collective excitability and self-sustained bursting oscillations are shown to spontaneously emerge in adaptive networks of globally coupled non-excitable units. The ingredients to observe collective excitability are the coexistence of states with different degree of synchronizaton joined to a global feedback acting, on a slow timescale, against the synchronization (desynchronization) of the oscillators. These regimes are illustrated for two paradigmatic classes of coupled rotators: namely, the Kuramoto model with and without inertia. For the bimodal Kuramoto model we analytically show that the macroscopic evolution originates from the existence of a critical manifold organizing the fast collective dynamics on a slow timescale. Our results provide evidence that adaptation can induce excitability by maintaining a network permanently out-of-equilibrium.
Synchronization in networks of coupled oscillators is known to be largely determined by the spectral and symmetry properties of the interaction network. Here we leverage this relation to study a class of networks for which the threshold coupling strength for global synchronization is the lowest among all networks with the same number of nodes and links. These networks, defined as being uniform, complete, and multi-partite (UCM), appear at each of an infinite sequence of network-complement transitions in a larger class of networks characterized by having near-optimal thresholds for global synchronization. We show that the distinct symmetry structure of the UCM networks, which by design are optimized for global synchronizability, often leads to formation of clusters of synchronous oscillators, and that such states can coexist with the state of global synchronization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا