Do you want to publish a course? Click here

Multiwavelength view of SPT-CL J2106-5844. The radio galaxies and the thermal and relativistic plasmas in a massive galaxy cluster merger at z~1.13

155   0   0.0 ( 0 )
 Added by Luca Di Mascolo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

SPT-CL J2106-5844 is among the most massive galaxy clusters at z>1 yet discovered. While initially used in cosmological tests to assess the compatibility with $Lambda$CDM cosmology of such a massive virialized object at this redshift, more recent studies indicate SPT-CL J2106-5844 is undergoing a major merger, and is not an isolated system with a singular, well-defined halo. We use sensitive, high spatial resolution measurements from ALMA and ACA of the thermal SZ effect to reconstruct the pressure distribution of the intracluster medium in this system. These measurements are coupled with radio observations from the EMU pilot survey, using ASKAP and the ATCA to search for diffuse nonthermal emission. Further, to better constrain the thermodynamic structure of the cluster, we complement our analysis with reprocessed archival $Chandra$ observations. We fit the ALMA+ACA SZ data in $uv$-space using a Bayesian forward modelling technique. The ASKAP and ATCA data are processed and imaged to specifically highlight any potential diffuse radio emission. In the ALMA+ACA SZ data, we reliably identify at high significance two main gas components associated with the mass clumps inferred from weak lensing. Our statistical test excludes at the ~9.9$sigma$ level the possibility of describing the system with a single SZ component. While the components had been more difficult to identify in the X-ray data alone, we find that the bimodal gas distribution is supported by the X-ray hardness distribution. The EMU radio observations reveal a diffuse radio structure ~400 kpc in projected extent along the northwest-southeast direction, indicative of strong activity from the active galactic nucleus within the brightest cluster galaxy. Interestingly, a putative optical star-forming filamentary structure detected in the HST image is in an excellent alignment with the radio structure, albeit on a smaller scale.



rate research

Read More

We present a detailed high-resolution weak-lensing (WL) study of SPT-CL J2106-5844 at z=1.132, claimed to be the most massive system discovered at z > 1 in the South Pole Telescope Sunyaev-Zeldovich (SPT-SZ) survey. Based on the deep imaging data from the Advanced Camera for Surveys and Wide Field Camera 3 on-board the Hubble Space Telescope, we find that the cluster mass distribution is asymmetric, composed of a main clump and a subclump ~640 kpc west thereof. The central clump is further resolved into two smaller northwestern and southeastern substructures separated by ~150 kpc. We show that this rather complex mass distribution is more consistent with the cluster galaxy distribution than a unimodal distribution as previously presented. The northwestern substructure coincides with the BCG and X-ray peak while the southeastern one agrees with the location of the number density peak. These morphological features and the comparison with the X-ray emission suggest that the cluster might be a merging system. We estimate the virial mass of the cluster to be $M_{200c} = (10.4^{+3.3}_{-3.0}pm1.0)~times~10^{14}~M_{odot}$, where the second error bar is the systematic uncertainty. Our result confirms that the cluster SPT-CL J2106-5844 is indeed the most massive cluster at z>1 known to date. We demonstrate the robustness of this mass estimate by performing a number of tests with different assumptions on the centroids, mass-concentration relations, and sample variance.
The advent of sensitive low frequency radio observations has revealed a number of diffuse radio objects with peculiar properties that are challenging our understanding about the physics of the intracluster medium. Here, we report the discovery of a steep spectrum radio halo surrounding the central Brightest Cluster Galaxy (BCG) in the galaxy cluster SPT-CL J2031-4037. This cluster is morphologically disturbed yet has a weak cool core, an example of cool core/non-cool core transition system, which harbours a radio halo of $sim 0.7$ Mpc in size. The halo emission detected at 1.7 GHz is less extended compared to that in the 325 MHz observation, and the spectral index of the part of the halo visible at 325 MHz to 1.7 GHz frequencies was found to be $-1.35 pm 0.07$. Also, $P_{1.4 mathrm{GHz}}$ was found to be $0.77 times 10^{24}$ W Hz$^{-1}$ which falls in the region where radio mini-halos, halo upper limits and ultra-steep spectrum (USS) halos are found in the $P_{1.4 mathrm{GHz}} - L_mathrm{X}$ plane. Additionally, simulations presented in the paper provide support to the scenario of the steep spectrum. The diffuse radio emission found in this cluster may be a steep spectrum intermediate or hybrid radio halo which is transitioning into a mini-halo.
We present 610 MHz and 2.1 GHz imaging of the massive SZE-selected z=0.870 cluster merger ACT-CL J0102-4915 (El Gordo), obtained with the GMRT and the ATCA, respectively. We detect two complexes of radio relics separated by 3.4 (1.6 Mpc) along the systems NW-to-SE collision axis that have high integrated polarizations (33%) and steep spectral indices, consistent with creation via Fermi acceleration by shocks in the ICM. From the spectral index of the relics, we compute a Mach number of 2.5^{+0.7}_{-0.3} and shock speed of 2500^{+400}_{-300} km/s. With our ATCA data, we compute the Faraday depth across the NW relic and find a mean value of 11 rad/m^2 and standard deviation of 6 rad/m^2. With the integrated line-of-sight gas density derived from new Chandra observations, our Faraday depth measurement implies B_parallel~0.01 mu G in the cluster outskirts. The extremely narrow shock widths in the relics (<23 kpc) prevent us from placing a meaningful constraint on |B| using cooling time arguments. In addition to the relics, we detect a large (1.1 Mpc radius), powerful (log L_1.4[W/Hz]= 25.66+-0.12) radio halo with a Bullet-like morphology. The spectral-index map of the halo shows the synchrotron spectrum is flattest near the relics, along the collision axis, and in regions of high T_gas, all locations associated with recent energy injection. The spatial and spectral correlation between the halo emission and cluster X-ray properties supports primary-electron processes like turbulent reacceleration as the halo production mechanism. The halos integrated 610 MHz to 2.1 GHz spectral index is 1.2+-0.1, consistent with the clusters high T_gas in view of previously established global scaling relations. El Gordo is the highest-redshift cluster known to host a radio halo and/or radio relics, and provides new constraints on the non-thermal physics in clusters at z>0.6. [abridged]
134 - Mathilde Jauzac 2014
We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403 (z=0.397). Our investigation of cluster substructure rests primarily on a combined strong- and weak-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the systems dynamics, we complement this lensing analysis with a study of the intra-cluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multi-scale grid model obtained from our combined lensing analysis extends the high-precision strong-lensing mass reconstruction recently performed to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well known mass concentrations in the cluster core. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excellent alignment is found for the NE cluster. Both the lensing analysis and the distribution of cluster light strongly suggest the presence of a third massive structure, almost 2 arcmin SW of the cluster centre. Since no X-ray emission is detected in this region, we conclude that this structure is non-virialised and speculate that it might be part of a large-scale filament almost aligned with our line of sight. Combining all evidence from the distribution of dark and luminous matter, we propose two alternative scenarios for the trajectories of the components of MACSJ0416.1-2403. Upcoming deep X-ray observations that allow the detection of shock fronts, cold cores, and sloshing gas (all key diagnostics for studies of cluster collisions) will allow us to test, and distinguish between these two scenarios.
55 - R. Gobat , E. Daddi , R.T. Coogan 2019
We present Atacama Large Millimetre Array and Atacama Compact Array observations of the Sunyaev-Zeldovich effect in the z = 2 galaxy cluster Cl J1449+0856, an X-ray-detected progenitor of typical massive clusters in the present day Universe. While in a cleaned but otherwise untouched 92 GHz map of this cluster, little to no negative signal is visible, careful subtraction of known sub-millimetre emitters in the uv plane reveals a decrement at 5$sigma$ significance. The total signal is -190$pm$36 $mu$Jy, with a peak offset by 5-9 ($sim$50 kpc) from both the X-ray centroid and the still-forming brightest cluster galaxy. A comparison of the recovered uv-amplitude profile of the decrement with different pressure models allows us to derive total mass constraints consistent with the $sim$6$times$10$^{13}$ M$_{odot}$ estimated from X-ray data. Moreover, we find no strong evidence for a deviation of the pressure profile with respect to local galaxy clusters, although a slight tension at small-to-intermediate spatial scales suggests a flattened central profile, opposite to what seen in a cool core and possibly an AGN-related effect. This analysis of the lowest mass single SZ detection so far illustrates the importance of interferometers when observing the SZ effect in high-redshift clusters, the cores of which cannot be considered quiescent, such that careful subtraction of galaxy emission is necessary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا