No Arabic abstract
While the occurrence rate of wide giant planets appears to increase with stellar mass at least up through the A-type regime, B-type stars have not been systematically studied in large-scale surveys so far. It therefore remains unclear up to what stellar mass this occurrence trend continues. The B-star Exoplanet Abundance Study (BEAST) is a direct imaging survey with the extreme adaptive optics instrument SPHERE, targeting 85 B-type stars in the young Scorpius-Centaurus (Sco-Cen) region with the aim to detect giant planets at wide separations and constrain their occurrence rate and physical properties. The statistical outcome of the survey will help determine if and where an upper stellar mass limit for planet formation occurs. In this work, we describe the selection and characterization of the BEAST target sample. Particular emphasis is placed on the age of each system, which is a central parameter in interpreting direct imaging observations. We implement a novel scheme for age dating based on kinematic sub-structures within Sco-Cen, which complements and expands upon previous age determinations in the literature. We also present initial results from the first epoch observations, including the detections of ten stellar companions, of which six were previously unknown. All planetary candidates in the survey will need follow up in second epoch observations, which are part of the allocated observational programme and will be executed in the near future.
Wide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-year baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345+/-6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16-25 Mjup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys.
We present new observations of the planet beta Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imaging, the Hipparcos Intermediate Astrometric Data (IAD), and the Gaia DR2 position, and demonstrate how to incorporate the IAD into direct imaging orbit fits. We find a mass consistent with predictions of hot-start evolutionary models and previous works following similar methods, though with larger uncertainties: 12.8 [+5.3, -3.2] M_Jup. Our eccentricity determination of 0.12 [+0.04, -0.03] disfavors circular orbits. We consider orbit fits to several different imaging datasets, and find generally similar posteriors on the mass for each combination of imaging data. Our analysis underscores the importance of performing joint fits to the absolute and relative astrometry simultaneously, given the strong covariance between orbital elements. Time of conjunction is well constrained within 2.8 days of 2017 September 13, with the star behind the planets Hill sphere between 2017 April 11 and 2018 February 16 (+/- 18 days). Following the recent radial velocity detection of a second planet in the system, beta Pic c, we perform additional two-planet fits combining relative astrometry, absolute astrometry, and stellar radial velocities. These joint fits find a significantly smaller mass for the imaged planet beta Pic b, of 8.0 +/- 2.6 M_Jup, in a somewhat more circular orbit. We expect future ground-based observations to further constrain the visual orbit and mass of the planet in advance of the release of Gaia DR4.
We present the discovery of two new 10-day period giant planets from the Transiting Exoplanet Survey Satellite ($TESS$) mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have similar radii ($0.99pm0.01$ $rm R_{J}$ and $1.07pm0.02$ $rm R_{J}$, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses ($1.53pm0.03$ $rm M_{J}$ versus $0.95pm0.07$ $rm M_{J}$, respectively). Both planets orbit metal-rich stars ([Fe/H]= $+0.26pm 0.05$ dex and [Fe/H] = $+0.24 pm 0.05$ dex, for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a $rm M_{star}$ = $1.14pm0.02$ $rm M_{odot}$, $rm R_{star}$ = $1.66pm0.02$ $rm R_{odot}$ G-type star ($T_{rm eff}$ = $5735 pm 72$ K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892, on the other hand, is a F-type dwarf star ($T_{rm eff}$ = $6261 pm 80$ K), which has a mass of $rm M_{star}$ = $1.28pm0.03$ $rm M_{odot}$, and a radius of $rm R_{star}$ = $1.39pm0.02$ $rm R_{odot}$. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-Object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Halpha emission line that falls within the H-band (1.6-1.8 um) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M_stellar>~10^10 Msolar. With the high multiplex capability of FMOS, it is now feasible to construct samples of over one thousand galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates Halpha and [NII]6585 thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate - stellar mass relation. Galaxies with Halpha detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35 um) grating to detect Hbeta and [OIII]5008 that provides an assessment of extinction required to measure star formation rates not hampered by dust, and an indication of embedded Active Galactic Nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.