Do you want to publish a course? Click here

The FMOS-COSMOS survey of star-forming galaxies at z~1.6 III. Survey design, performance, and sample characteristics

293   0   0.0 ( 0 )
 Added by John D. Silverman
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-Object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Halpha emission line that falls within the H-band (1.6-1.8 um) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M_stellar>~10^10 Msolar. With the high multiplex capability of FMOS, it is now feasible to construct samples of over one thousand galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates Halpha and [NII]6585 thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate - stellar mass relation. Galaxies with Halpha detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35 um) grating to detect Hbeta and [OIII]5008 that provides an assessment of extinction required to measure star formation rates not hampered by dust, and an indication of embedded Active Galactic Nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.



rate research

Read More

We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at $1.4lesssim zlesssim1.7$, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range $10^{9.6} lesssim M_ast/M_odot lesssim 10^{11.6}$ with those at $M_ast>10^{11}~M_odot$ being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density ($n_e=220^{+170}_{-130}~mathrm{cm^{-3}}$), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies ($M_astgtrsim10^{11}~M_odot$) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution mode is implemented to detect H$alpha$ in emission between $1.6{rm -}1.8 mathrm{mu m}$ with $f_{rm Halpha}gtrsim4times10^{-17}$ erg cm$^{-2}$ s$^{-1}$. Here, we specifically focus on 271 sBzK-selected galaxies that yield a H$alpha$ detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further $J$-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction ($0.6lesssim A_mathrm{Halpha} lesssim 2.5$) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission hbox{$E_mathrm{star}(B-V)/E_mathrm{neb}(B-V)$} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an H$alpha$-based main sequence with a slope ($0.81pm0.04$) and normalization similar to previous studies at these redshifts.
We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate, and dust content of star-forming galaxies at z$sim$1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity relation at $zsim1.6$ is steeper than the relation observed in the local Universe. The steeper MZ relation at $zsim1.6$ is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at $zsim1.6$. The most massive galaxies at $zsim1.6$ ($sim 10^{11}M_odot$) are enriched to the level observed in massive galaxies in the local Universe. The mass-metallicity relation we measure at $zsim1.6$ supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and star formation rate for galaxies at a fixed stellar mass at $zsim1.6$ which is similar to trends observed in the local Universe. We do not find a relation between stellar mass, metallicity and star formation rate that is independent of redshift; our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity and dust extinction. We find that at a fixed stellar mass dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs and dust extinctions we conclude that stellar mass is most closely related to dust extinction.
188 - Ian Smail , J.E. Geach 2013
We analyse new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z=1.62 cluster, Cl0218.3-0510, which lies in the UKIDSS/UDS field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities >1e12 Lo and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit Cycle-1 ALMA submillimeter continuum imaging which covers one of these sources to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalised sense) than clusters at z~0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z=1.6, M(H)~-23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present-day which are less luminous than the descendants of those galaxies which were already passive at z~1.6 (M(H)~-20.5 and M(H)~-21.5 respectively at z~0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z=1.6 and that in Cl0218.3-0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.
We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared selected galaxies in COSMOS and obtain the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at these redshifts. The far-infrared selection results in a sample of galaxies that are massive systems that span a range of metallicities in comparison with previous optically selected surveys, and thus has a higher AGN fraction and better samples the AGN branch. We establish the presence of AGN and starbursts in this sample of (U)LIRGs selected as Herschel-PACS and Spitzer-MIPS detections in two redshift bins (z~0.7 and z~1.5) and test the redshift dependence of diagnostics used to separate AGN from star-formation dominated galaxies. In addition, we construct a low redshift (z~0.1) comparison sample of infrared selected galaxies and find that the evolution from z~1.5 to today is consistent with an evolving AGN selection line and a range of ISM conditions and metallicities from the models of Kewley et al. (2013b). We find that a large fraction of (U)LIRGs are BPT-selected AGN using their new, redshift-dependent classification line. We compare the position of known X-ray detected AGN (67 in total) with the BPT selection and find that the new classification line accurately selects most of these objects (> 70%). Furthermore, we identify 35 new (likely obscured) AGN not selected as such by their X-ray emission. Our results have direct implications for AGN selection at higher redshift with either current (MOSFIRE, KMOS) or future (PFS, MOONS) spectroscopic efforts with near-infrared spectral coverage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا