No Arabic abstract
Narwhal is one of the most mysterious marine mammals, due to its isolated habitat in the Arctic region. Tagging is a technology that has the potential to explore the activities of this species, where behavioral information can be collected from instrumented individuals. This includes accelerometer data, diving and acoustic data as well as GPS positioning. An essential element in understanding the ecological role of toothed whales is to characterize their feeding behavior and estimate the amount of food consumption. Buzzes are sounds emitted by toothed whales that are related directly to the foraging behaviors. It is therefore of interest to measure or estimate the rate of buzzing to estimate prey intake. The main goal of this paper is to find a way to detect prey capture attempts directly from accelerometer data, and thus be able to estimate food consumption without the need for the more demanding acoustic data. We develop 3 automated buzz detection methods based on accelerometer and depth data solely. We use a dataset from 5 narwhals instrumented in East Greenland in 2018 to train, validate and test a logistic regression model and the machine learning algorithms random forest and deep learning, using the buzzes detected from acoustic data as the ground truth. The deep learning algorithm performed best among the tested methods. We conclude that reliable buzz detectors can be derived from high-frequency-sampling, back-mounted accelerometer tags, thus providing an alternative tool for studies of foraging ecology of marine mammals in their natural environments. We also compare buzz detection with certain movement patterns, such as sudden changes in acceleration (jerks), found in other marine mammal species for estimating prey capture. We find that narwhals do not seem to make big jerks when foraging and conclude that their hunting patterns in that respect differ from other marine mammals.
Since the beginning of this decade, CNN has been a very successful tool in the field of Computer Vision tasks.The invention of CNN was inspired from neuroscience and it shares a lot of anatomical similarities with our visual system.Inspired by the anatomyof humanvisual system, wearguethat the existing U-Net architecture can be improvedin many ways. As human visual system uses attention mechanism, we have used attention concatenation in place of normalconcatenation.Although, CNN is purely feed-forward in nature but anatomical evidences show that our brain contains recurrent synapses and they often outnumber feed-forward and top-down connections. Thisfact inspiresus to userecurrent convolution connectionsin place of normalconvolution blocksin U-Net.Thispaper also addressesthe class imbalance issuein the field of medical image analysis. The paperresolvestheproblem of class imbalanceswith the help of state-of-the-art loss functions.Weargue thatourproposed architecturecan be trained end to end with a few training data and it outperforms the other variantsof U-Net.
This study aimed at estimating total forest above-ground net change (Delta AGB, Mt) over five years (2014-2019) based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a boreal forest area (approx. 1.4 Mill hectares) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of estimates using only the NFI data in a basic expansion estimator were compared to four different alternative model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed data. We found that the use of remotely sensed data improved the precision of the purely field-based estimates by a factor of up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 (standard error; SE= 1.7 Mt). However, the decrease in precision when using Landsat data was small (SE= 1.92 Mt). In addition, we found that Delta AGB could be precisely estimated also when remotely sensed data were available only at the end of the monitoring period. We conclude that satellite optical data can considerably improve Delta AGB estimates, even in those cases where repeated and coincident NFI data are available. The free availability, global coverage, frequent update, and long-term time horizon make data from programs such as Sentinel-2 and Landsat a valuable data source for a consistent and durable monitoring of forest carbon dynamics.
Absorption, distribution, metabolism, and excretion (ADME) studies are critical for drug discovery. Conventionally, these tasks, together with other chemical property predictions, rely on domain-specific feature descriptors, or fingerprints. Following the recent success of neural networks, we developed Chemi-Net, a completely data-driven, domain knowledge-free, deep learning method for ADME property prediction. To compare the relative performance of Chemi-Net with Cubist, one of the popular machine learning programs used by Amgen, a large-scale ADME property prediction study was performed on-site at Amgen. The results showed that our deep neural network method improved current methods by a large margin. We foresee that the significantly increased accuracy of ADME prediction seen with Chemi-Net over Cubist will greatly accelerate drug discovery.
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.
We consider multivariate two-sample tests of means, where the location shift between the two populations is expected to be related to a known graph structure. An important application of such tests is the detection of differentially expressed genes between two patient populations, as shifts in expression levels are expected to be coherent with the structure of graphs reflecting gene properties such as biological process, molecular function, regulation or metabolism. For a fixed graph of interest, we demonstrate that accounting for graph structure can yield more powerful tests under the assumption of smooth distribution shift on the graph. We also investigate the identification of nonhomogeneous subgraphs of a given large graph, which poses both computational and multiple hypothesis testing problems. The relevance and benefits of the proposed approach are illustrated on synthetic data and on breast and bladder cancer gene expression data analyzed in the context of KEGG and NCI pathways.