Do you want to publish a course? Click here

The 2020 Personalized Voice Trigger Challenge: Open Database, Evaluation Metrics and the Baseline Systems

60   0   0.0 ( 0 )
 Added by Yan Jia
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The 2020 Personalized Voice Trigger Challenge (PVTC2020) addresses two different research problems a unified setup: joint wake-up word detection with speaker verification on close-talking single microphone data and far-field multi-channel microphone array data. Specially, the second task poses an additional cross-channel matching challenge on top of the far-field condition. To simulate the real-life application scenario, the enrollment utterances are recorded from close-talking cell-phone only, while the test utterances are recorded from both the close-talking cell-phone and the far-field microphone arrays. This paper introduces our challenge setup and the released database as well as the evaluation metrics. In addition, we present a joint end-to-end neural network baseline system trained with the proposed database for speaker-dependent wake-up word detection. Results show that the cost calculated from the miss rate and the false alarm rate, can reach 0.37 in the close-talking single microphone task and 0.31 in the far-field microphone array task. The official website and the open-source baseline system have been released.



rate research

Read More

154 - Jingyong Hou , Li Zhang , Yihui Fu 2021
This paper describes the system developed by the NPU team for the 2020 personalized voice trigger challenge. Our submitted system consists of two independently trained subsystems: a small footprint keyword spotting (KWS) system and a speaker verification (SV) system. For the KWS system, a multi-scale dilated temporal convolutional (MDTC) network is proposed to detect wake-up word (WuW). For SV system, Write something here. The KWS predicts posterior probabilities of whether an audio utterance contains WuW and estimates the location of WuW at the same time. When the posterior probability ofWuW reaches a predefined threshold, the identity information of triggered segment is determined by the SV system. On evaluation dataset, our submitted system obtains detection costs of 0.081and 0.091 in close talking and far-field tasks, respectively.
220 - Dexin Liao , Jing Li , Yiming Zhi 2021
In this paper, we present the XMUSPEECH system for Task 1 of 2020 Personalized Voice Trigger Challenge (PVTC2020). Task 1 is a joint wake-up word detection with speaker verification on close talking data. The whole system consists of a keyword spotting (KWS) sub-system and a speaker verification (SV) sub-system. For the KWS system, we applied a Temporal Depthwise Separable Convolution Residual Network (TDSC-ResNet) to improve the systems performance. For the SV system, we proposed a multi-task learning network, where phonetic branch is trained with the character label of the utterance, and speaker branch is trained with the label of the speaker. Phonetic branch is optimized with connectionist temporal classification (CTC) loss, which is treated as an auxiliary module for speaker branch. Experiments show that our system gets significant improvements compared with baseline system.
The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed a new database for two tasks, intra-lingual semi-parallel and cross-lingual VC. After a two-month challenge period, we received 33 submissions, including 3 baselines built on the database. From the results of crowd-sourced listening tests, we observed that VC methods have progressed rapidly thanks to advanced deep learning methods. In particular, speaker similarity scores of several systems turned out to be as high as target speakers in the intra-lingual semi-parallel VC task. However, we confirmed that none of them have achieved human-level naturalness yet for the same task. The cross-lingual conversion task is, as expected, a more difficult task, and the overall naturalness and similarity scores were lower than those for the intra-lingual conversion task. However, we observed encouraging results, and the MOS scores of the best systems were higher than 4.0. We also show a few additional analysis results to aid in understanding cross-lingual VC better.
This report describes our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) at Interspeech 2020. We perform a careful analysis of speaker recognition models based on the popular ResNet architecture, and train a number of variants using a range of loss functions. Our results show significant improvements over most existing works without the use of model ensemble or post-processing. We release the training code and pre-trained models as unofficial baselines for this years challenge.
The Voice Conversion Challenge 2020 is the third edition under its flagship that promotes intra-lingual semiparallel and cross-lingual voice conversion (VC). While the primary evaluation of the challenge submissions was done through crowd-sourced listening tests, we also performed an objective assessment of the submitted systems. The aim of the objective assessment is to provide complementary performance analysis that may be more beneficial than the time-consuming listening tests. In this study, we examined five types of objective assessments using automatic speaker verification (ASV), neural speaker embeddings, spoofing countermeasures, predicted mean opinion scores (MOS), and automatic speech recognition (ASR). Each of these objective measures assesses the VC output along different aspects. We observed that the correlations of these objective assessments with the subjective results were high for ASV, neural speaker embedding, and ASR, which makes them more influential for predicting subjective test results. In addition, we performed spoofing assessments on the submitted systems and identified some of the VC methods showing a potentially high security risk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا