No Arabic abstract
The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed a new database for two tasks, intra-lingual semi-parallel and cross-lingual VC. After a two-month challenge period, we received 33 submissions, including 3 baselines built on the database. From the results of crowd-sourced listening tests, we observed that VC methods have progressed rapidly thanks to advanced deep learning methods. In particular, speaker similarity scores of several systems turned out to be as high as target speakers in the intra-lingual semi-parallel VC task. However, we confirmed that none of them have achieved human-level naturalness yet for the same task. The cross-lingual conversion task is, as expected, a more difficult task, and the overall naturalness and similarity scores were lower than those for the intra-lingual conversion task. However, we observed encouraging results, and the MOS scores of the best systems were higher than 4.0. We also show a few additional analysis results to aid in understanding cross-lingual VC better.
The Voice Conversion Challenge 2020 is the third edition under its flagship that promotes intra-lingual semiparallel and cross-lingual voice conversion (VC). While the primary evaluation of the challenge submissions was done through crowd-sourced listening tests, we also performed an objective assessment of the submitted systems. The aim of the objective assessment is to provide complementary performance analysis that may be more beneficial than the time-consuming listening tests. In this study, we examined five types of objective assessments using automatic speaker verification (ASV), neural speaker embeddings, spoofing countermeasures, predicted mean opinion scores (MOS), and automatic speech recognition (ASR). Each of these objective measures assesses the VC output along different aspects. We observed that the correlations of these objective assessments with the subjective results were high for ASV, neural speaker embedding, and ASR, which makes them more influential for predicting subjective test results. In addition, we performed spoofing assessments on the submitted systems and identified some of the VC methods showing a potentially high security risk.
Current voice conversion (VC) methods can successfully convert timbre of the audio. As modeling source audios prosody effectively is a challenging task, there are still limitations of transferring source style to the converted speech. This study proposes a source style transfer method based on recognition-synthesis framework. Previously in speech generation task, prosody can be modeled explicitly with prosodic features or implicitly with a latent prosody extractor. In this paper, taking advantages of both, we model the prosody in a hybrid manner, which effectively combines explicit and implicit methods in a proposed prosody module. Specifically, prosodic features are used to explicit model prosody, while VAE and reference encoder are used to implicitly model prosody, which take Mel spectrum and bottleneck feature as input respectively. Furthermore, adversarial training is introduced to remove speaker-related information from the VAE outputs, avoiding leaking source speaker information while transferring style. Finally, we use a modified self-attention based encoder to extract sentential context from bottleneck features, which also implicitly aggregates the prosodic aspects of source speech from the layered representations. Experiments show that our approach is superior to the baseline and a competitive system in terms of style transfer; meanwhile, the speech quality and speaker similarity are well maintained.
This paper presents a novel framework to build a voice conversion (VC) system by learning from a text-to-speech (TTS) synthesis system, that is called TTS-VC transfer learning. We first develop a multi-speaker speech synthesis system with sequence-to-sequence encoder-decoder architecture, where the encoder extracts robust linguistic representations of text, and the decoder, conditioned on target speaker embedding, takes the context vectors and the attention recurrent network cell output to generate target acoustic features. We take advantage of the fact that TTS system maps input text to speaker independent context vectors, and reuse such a mapping to supervise the training of latent representations of an encoder-decoder voice conversion system. In the voice conversion system, the encoder takes speech instead of text as input, while the decoder is functionally similar to TTS decoder. As we condition the decoder on speaker embedding, the system can be trained on non-parallel data for any-to-any voice conversion. During voice conversion training, we present both text and speech to speech synthesis and voice conversion networks respectively. At run-time, the voice conversion network uses its own encoder-decoder architecture. Experiments show that the proposed approach outperforms two competitive voice conversion baselines consistently, namely phonetic posteriorgram and variational autoencoder methods, in terms of speech quality, naturalness, and speaker similarity.
Voice conversion (VC) techniques aim to modify speaker identity of an utterance while preserving the underlying linguistic information. Most VC approaches ignore modeling of the speaking style (e.g. emotion and emphasis), which may contain the factors intentionally added by the speaker and should be retained during conversion. This study proposes a sequence-to-sequence based non-parallel VC approach, which has the capability of transferring the speaking style from the source speech to the converted speech by explicitly modeling. Objective evaluation and subjective listening tests show superiority of the proposed VC approach in terms of speech naturalness and speaker similarity of the converted speech. Experiments are also conducted to show the source-style transferability of the proposed approach.
This paper describes the Academia Sinica systems for the two tasks of Voice Conversion Challenge 2020, namely voice conversion within the same language (Task 1) and cross-lingual voice conversion (Task 2). For both tasks, we followed the cascaded ASR+TTS structure, using phonetic tokens as the TTS input instead of the text or characters. For Task 1, we used the international phonetic alphabet (IPA) as the input of the TTS model. For Task 2, we used unsupervised phonetic symbols extracted by the vector-quantized variational autoencoder (VQVAE). In the evaluation, the listening test showed that our systems performed well in the VCC2020 challenge.