No Arabic abstract
The central challenge for describing the dynamics in open quantum systems is that the Hilbert space of typical environments is too large to be treated exactly. In some cases, such as when the environment has a short memory time or only interacts weakly with the system, approximate descriptions of the system are possible. Beyond these, numerically exact methods exist, but these are typically restricted to baths with Gaussian correlations, such as non-interacting bosons. Here we present a numerically exact method for simulating open quantum systems with arbitrary environments which consist of a set of independent degrees of freedom. Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant. Specifically, we show how the process tensor -- which describes the effect of the environment -- can be iteratively constructed and compressed using matrix product state techniques. We demonstrate the power of this method by applying it to problems with bosonic, fermionic, and spin environments: electron transport, phonon effects and radiative decay in quantum dots, central spin dynamics, anharmonic environments, dispersive coupling to time-dependent lossy cavity modes, and superradiance. The versatility and efficiency of our automated compression of environments (ACE) method provides a practical general-purpose tool for open quantum systems.
The dynamics of an open system crucially depends on the correlation function of its environment, $C_B(t)$. We show that for thermal non-Harmonic environments $C_B(t)$ may not decay to zero but to an offset, $C_0>0$. The presence of such offset is determined by the environment eigenstate structure, and whether it fulfills or not the eigenstate thermalization hypothesis. Moreover, we show that a $C_0>0$ could render the weak coupling approximation inaccurate and prevent the open system to thermalize. Finally, for a realistic environment of dye molecules, we show the emergence of the offset by using matrix product states (MPS), and discuss its link to a 1/f noise spectrum that, in contrast to previous models, extends to zero frequencies. Thus, our results may be relevant in describing dissipation in quantum technological devices like superconducting qubits, which are known to be affected by such noise.
We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the Extended Stochastic Liouville-von Neumann equation. Our approach generalises previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fullfills a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.
We address parameter estimation for complex/structured systems and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e. the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature and the interaction time. Upon investigating the Fisher information of feasible measurements we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.
This review article summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.