Do you want to publish a course? Click here

Ideal topological gas in the high temperature phase of SU(3) gauge theory

70   0   0.0 ( 0 )
 Added by Tamas Kovacs G.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that the nature of the topological fluctuations in $SU(3)$ gauge theory changes drastically at the finite temperature phase transition. Starting from temperatures right above the phase transition topological fluctuations come in well separated lumps of unit charge that form a non-interacting ideal gas. Our analysis is based on a novel method to count not only the net topological charge, but also separately the number of positively and negatively charged lumps in lattice configurations using the spectrum of the overlap Dirac operator. This enables us to determine the joint distribution of the number of positively and negatively charged topological objects, and we find this distribution to be consistent with that of an ideal gas of unit charged topological objects.



rate research

Read More

We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using a new method local analysis, we conjecture that the conformal region exists together with the confining region and the deconfining region in the phase structure parametrized by beta and K, both in the cases of the large Nf QCD within the conformal window (referred as Conformal QCD) with an IR cutoff and small Nf QCD at T/Tc>1 with Tc being the chiral transition temperature (referred as High Temperature QCD). Our numerical simulation on a lattice of the size 16^3 x 64 shows the following evidence of the conjecture. In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified by non-perturbative effects and temporal propagators of meson behave at large t as a power-law corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining region or the confining region is a sharp transition between different vacua and therefore it suggests a first order transition both in Conformal QCD and in High Temperature QCD. Within our fixed lattice simulation, we find that there is a precise correspondence between Conformal QCD and High Temperature QCD in the temporal propagators under the change of the parameters Nf and T/Tc respectively. In particular, we find the correspondence between Conformal QCD with Nf = 7 and High Temperature QCD with Nf=2 at T ~ 2 Tc being in close relation to a meson unparticle model. From this we estimate the anomalous mass dimension gamma* = 1.2 (1) for Nf=7. We also show that the asymptotic state in the limit T/Tc --> infty is a free quark state in the Z(3) twisted vacuum.
A novel method to study the bulk thermodynamics in lattice gauge theory is proposed on the basis of the Yang-Mills gradient flow with a fictitious time t. The energy density (epsilon) and the pressure (P) of SU(3) gauge theory at fixed temperature are calculated directly on 32^3 x (6,8,10) lattices from the thermal average of the well-defined energy-momentum tensor (T_{mu nu}^R(x)) obtained by the gradient flow. It is demonstrated that the continuum limit can be taken in a controlled manner from the t-dependence of the flowed data.
We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 lesssim 20$ on lattice volumes as large as $48^3 times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupled lattice phase as the mass decreases. That is, finite-temperature studies with this lattice action require even larger $N_T > 24$ to directly confirm spontaneous chiral symmetry breaking.
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size in the temporal direction Nt=6, 8 and 12 and extrapolate the results to the continuum limit. We also investigate the spatial volume dependence. The energy density and pressure are evaluated by the derivative method with non-perturabative anisotropy coefficients. We adopt a multi-point reweighting method to determine the anisotropy coefficients. We confirm that the anisotropy coefficients approach the perturbative values as Nt increases. We find that the pressure gap vanishes at all values of Nt when the non-perturbative anisotropy coefficients are used. The spatial volume dependence in the latent heat is found to be small on large lattices. Performing extrapolation to the continuum limit, we obtain $ Delta epsilon/T^4 = 0.75 pm 0.17 $ and $ Delta (epsilon -3 p)/T^4 = 0.623 pm 0.056.$
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size in the temporal direction $N_t=6,$ 8 and 12 and extrapolate the results to the continuum limit. The energy density and pressure are evaluated by the derivative method with nonperturabative anisotropy coefficients. We find that the pressure gap vanishes at all values of $N_t$. The spatial volume dependence in the latent heat is found to be small on large lattices. Performing extrapolation to the continuum limit, we obtain $Delta epsilon/T^4 = 0.75 pm 0.17$ and $Delta (epsilon -3 p)/T^4 = 0.623 pm 0.056.$ We also tested a method using the Yang-Mills gradient flow. The preliminary results are consistent with those by the derivative method within the error.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا