Do you want to publish a course? Click here

Spontaneous fractional Chern insulators in transition metal dichalcogenides Moire superlattices

109   0   0.0 ( 0 )
 Added by Heqiu Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Moir{e} superlattice realized in two-dimensional heterostructures offers an exciting platform to access strongly-correlated electronic states. In this work, we study transition metal dichalcogenides (TMD) Moir{e} superlattices with time-reversal-symmetry and nontrivial spin{/valley}-Chern numbers. Utilizing realistic material parameters and the method of exact diagonalization, we find that at a certain twisting angle and fractional filling, gapped fractional topological states, i.e., fractional Chern insulators, are naturally {stabilized} by simply introducing the Coulomb repulsion. In contrast to fractional quantum Hall systems, where the time-reversal symmetry has to be broken explicitly, these fractional states break the time-reversal symmetry spontaneously. {We show that the Chern number contrasting in the opposite valleys imposes a strong constraint on the nature of fractional Chern insulator and the associated low energy excitations.} We also propose to realize the non-abelian Moore-Read state in TMD Moir{e} superlattice sandwiched between nonlinear dielectric media.

rate research

Read More

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetically flat Chern bands and highlighted the critical role of a particular quantum band geometry. Thus far, however, FCI states have only been observed in Bernal-stacked bilayer graphene aligned with hexagonal boron nitride (BLG/hBN), in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field and limiting its potential for applications. By contrast, magic angle twisted bilayer graphene (MATBG) supports flat Chern bands at zero magnetic field, and therefore offers a promising route toward stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in MATBG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically-trivial charge density wave states. Unlike the BLG/hBN platform, we demonstrate that the principal role of the weak magnetic field here is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum band geometry favorable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in moire systems with native flat Chern bands.
115 - Chenhao Jin , Zui Tao , Tingxin Li 2020
Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions. One representative example is the copper-oxide superconductors, where stripe order is thought to be relevant to the mechanism of high-temperature superconductivity. Identifying and studying the stripe phases in conventional strongly correlated systems are, however, challenging due to the complexity and limited tunability of these materials. Here we uncover stripe phases in WSe2/WS2 moire superlattices with continuously gate-tunable charge densities by combining optical anisotropy and electronic compressibility measurements. We find strong electronic anisotropy over a large doping range peaked at 1/2 filling of the moire superlattice. The 1/2-state is incompressible and assigned to a (insulating) stripe crystal phase. It can be continuously melted by thermal fluctuations around 35 K. The domain configuration revealed by wide-field imaging shows a preferential alignment along the high-symmetry axes of the moire superlattice. Away from 1/2 filling, we observe additional stripe crystals at commensurate filling 1/4, 2/5 and 3/5. The anisotropy also extends into the compressible regime of the system at incommensurate fillings, indicating the presence of electronic liquid crystal states. The observed filling-dependent stripe phases agree with the theoretical phase diagram of the extended Hubbard model on a triangular lattice in the flat band limit. Our results demonstrate that two-dimensional semiconductor moire superlattices are a highly tunable platform to study the stripe phases and their interplay with other symmetry breaking ground states.
We develop parameters for the interlayer Kolmogorov-Crespi (KC) potential to study structural features of four transition metal dichalcogenides (TMDs): MoS$_2$, WS$_2$, MoSe$_2$ and WSe$_2$. We also propose a mixing rule to extend the parameters to their heterostructures. Moire superlattices of twisted bilayer TMDs have been recently shown to host shear solitons, topological point defects and ultraflatbands close to the valence band edge. Performing structural relaxations at the DFT level is a major bottleneck in the study of these systems. We show that the parametrized KC potential can be used to obtain atomic relaxations in good agreement with DFT relaxations. Furthermore, the moire superlattices relaxed using DFT and the proposed forcefield yield very similar electronic band structures.
Electrons in moire flat band systems can spontaneously break time reversal symmetry, giving rise to a quantized anomalous Hall effect. Here we use a superconducting quantum interference device to image stray magnetic fields in one such system composed of twisted bilayer graphene aligned to hexagonal boron nitride. We find a magnetization of several Bohr magnetons per charge carrier, demonstrating that the magnetism is primarily orbital in nature. Our measurements reveal a large change in the magnetization as the chemical potential is swept across the quantum anomalous Hall gap consistent with the expected contribution of chiral edge states to the magnetization of an orbital Chern insulator. Mapping the spatial evolution of field-driven magnetic reversal, we find a series of reproducible micron scale domains whose boundaries host chiral edge states.
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation symmetry. We explicitly demonstrate the nontrivial topological indices and existence of the hallmark corner states with quantized fractional charge for these familiar TMDs with large bulk optical band gaps ($1.64-1.95$ eV for the monolayers), which would facilitate the experimental detection by STM. We find that the well-defined corner states exist in the triangular finite-size flakes with armchair edges of the atomically thin ($1-N$ layers) 2H group-VIB TMDs, and the corresponding quantized fractional charge is the number of layers $N$ divided by 3 modulo integers, which will simply double including spin degree of freedom.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا