Do you want to publish a course? Click here

A Bayesian spatio-temporal abundance model for surveillance of the opioid epidemic

49   0   0.0 ( 0 )
 Added by Staci Hepler
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Opioid misuse is a national epidemic and a significant drug related threat to the United States. While the scale of the problem is undeniable, estimates of the local prevalence of opioid misuse are lacking, despite their importance to policy-making and resource allocation. This is due, in part, to the challenge of directly measuring opioid misuse at a local level. In this paper, we develop a Bayesian hierarchical spatio-temporal abundance model that integrates indirect county-level data on opioid overdose deaths and treatment admissions with state-level survey estimates on prevalence of opioid misuse to estimate the latent county-level prevalence and counts of people who misuse opioids. A simulation study shows that our joint model accurately recovers the latent counts and prevalence and thus overcomes known limitations with identifiability in abundance models with non-replicated observations. We apply our model to county-level surveillance data from the state of Ohio. Our proposed framework can be applied to other applications of small area estimation for hard to reach populations, which is a common occurrence with many health conditions such as those related to illicit behaviors.



rate research

Read More

The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article we consider the use of Bayesian nonparametric approaches to analysing data from disease outbreaks. Specifically we focus on methods for estimating the infection process in simple models under the assumption that this process has an explicit time-dependence.
The emergence of Covid-19 requires new effective tools for epidemiological surveillance. Spatio-temporal disease mapping models, which allow dealing with highly disaggregated spatial and temporal units of analysis, are a priority in this sense. Spatio-temporal models provide a geographically detailed and temporally updated overview of the current state of the pandemics, making public health interventions to be more effective. Moreover, the use of spatio-temporal disease mapping models in the new Covid-19 epidemic context, facilitates estimating newly demanded epidemiological indicators, such as the instantaneous reproduction number (R_t), even for small areas. This, in turn, allows to adapt traditional disease mapping models to these new circumstancies and make their results more useful in this particular context. In this paper we propose a new spatio-temporal disease mapping model, particularly suited to Covid-19 surveillance. As an additional result, we derive instantaneous reproduction number estimates for small areas, enabling monitoring this parameter with a high spatial disaggregation. We illustrate the use of our proposal with the separate study of the disease pandemics in two Spanish regions. As a result, we illustrate how touristic flows could haved shaped the spatial distribution of the disease. In these real studies, we also propose new surveillance tools that can be used by regional public health services to make a more efficient use of their resources.
162 - Jie Wu , Wei Zhang , Guanbin Li 2021
In this paper, we introduce a novel task, referred to as Weakly-Supervised Spatio-Temporal Anomaly Detection (WSSTAD) in surveillance video. Specifically, given an untrimmed video, WSSTAD aims to localize a spatio-temporal tube (i.e., a sequence of bounding boxes at consecutive times) that encloses the abnormal event, with only coarse video-level annotations as supervision during training. To address this challenging task, we propose a dual-branch network which takes as input the proposals with multi-granularities in both spatial-temporal domains. Each branch employs a relationship reasoning module to capture the correlation between tubes/videolets, which can provide rich contextual information and complex entity relationships for the concept learning of abnormal behaviors. Mutually-guided Progressive Refinement framework is set up to employ dual-path mutual guidance in a recurrent manner, iteratively sharing auxiliary supervision information across branches. It impels the learned concepts of each branch to serve as a guide for its counterpart, which progressively refines the corresponding branch and the whole framework. Furthermore, we contribute two datasets, i.e., ST-UCF-Crime and STRA, consisting of videos containing spatio-temporal abnormal annotations to serve as the benchmarks for WSSTAD. We conduct extensive qualitative and quantitative evaluations to demonstrate the effectiveness of the proposed approach and analyze the key factors that contribute more to handle this task.
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically noisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
The prevalence of multivariate space-time data collected from monitoring networks and satellites or generated from numerical models has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a key role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا