No Arabic abstract
Networks with a scale-free degree distribution are widely thought to promote cooperation in various games. Herein, by studying the well-known prisoners dilemma game, we demonstrate that this need not necessarily be true. For the very same degree sequence and degree distribution, we present a variety of possible behaviour. We reassess the perceived importance of hubs in a network towards the maintenance of cooperation. We also reevaluate the dependence of cooperation on network clustering and assortativity.
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a Prisoners Dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.
We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution. We use two different approaches: the deterministic mean-field approximation used by Barabasi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.
Taking into account the fact that overload failures in real-world functional networks are usually caused by extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are described by random walkers moving on a network and a node fails when the number of walkers on the node is beyond the node capacity. Our results obtained by using the generating function method shows that scale-free networks are more robust against cascading overload failures than ErdH{o}s-Renyi random graphs with homogeneous degree distributions. This conclusion is contrary to that predicted by previous works which neglect the effect of fluctuations of loads.
Evolutionary game theory is employed to study topological conditions of scale-free networks for the evolution of cooperation. We show that Apollonian Networks (ANs) are perfect scale-free networks, on which cooperation can spread to all individuals, even though there are initially only 3 or 4 hubs occupied by cooperators and all the others by defectors. Local topological features such as degree, clustering coefficient, gradient as well as topology potential are adopted to analyze the advantages of ANs in cooperation enhancement. Furthermore, a degree-skeleton underlying ANs is uncovered for understanding the cooperation diffusion. Constructing this kind degree-skeleton for random scale-free networks promotes cooperation level close to that of Barabasi-Albert networks, which gives deeper insights into the origin of the latter on organization and further promotion of cooperation.
We study the evolutionary Prisoners Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.