Do you want to publish a course? Click here

The Rise and Emergence of Untwisted Toroidal Flux Ropes on the Sun

125   0   0.0 ( 0 )
 Added by Kalman Knizhnik
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic flux ropes (MFRs) rising buoyantly through the Suns convection zone are thought to be subject to viscous forces preventing them from rising coherently. Numerous studies have suggested that MFRs require a minimum twist in order to remain coherent during their rise. Furthermore, even MFRs that get to the photosphere may be unable to successfully emerge into the corona unless they are at least moderately twisted, since the magnetic pressure gradient needs to overcome the weight of the photospheric plasma. To date, however, no lower limit has been placed on the critical minimum twist required for an MFR to rise coherently through the convection zone or emerge through the photosphere. In this paper, we simulate an untwisted toroidal MFR which is able to rise from the convection zone and emerge through the photosphere as an active region that resembles those observed on the Sun. We show that untwisted MFRs can remain coherent during their rise and then pile-up near the photosphere, triggering the undular instability, allowing the MFR to emerge through the photosphere. We propose that the toroidal geometry of our MFR is critical for its coherent rise. Upon emerging, a pair of lobes rises into the corona which interact and reconnect, resulting in a localized high speed jet. The resulting photospheric magnetogram displays the characteristic salt-and-pepper structure often seen in observations. Our major result is that MFRs need not be twisted to rise coherently through the convection zone and emerge through the photosphere.



rate research

Read More

101 - C. Xing , X. Cheng , Jiong Qiu 2019
In past decades, much progress has been achieved on the origin and evolution of coronal mass ejections (CMEs). In-situ observations of the counterparts of CMEs, especially magnetic clouds (MCs) near the Earth, have provided measurements of the structure and total flux of CME flux ropes. However, it has been difficult to measure these properties in the erupting CME flux rope, in particular in the pre-existing flux rope. In this work, we propose a model to estimate the toroidal flux of the pre-existing flux rope by subtracting the flux contributed by magnetic reconnection during the eruption from the flux measured in the MC. The flux by the reconnection is derived from geometric properties of two-ribbon flares based on a quasi-2D reconnection model. We then apply the model to four CME/flare events and find that the ratio of toroidal flux in the pre-existing flux rope to that of the associated MC lies in the range of 0.40--0.88. It indicates that the toroidal flux of the pre-existing flux rope has an important contribution to that of the CME flux rope and is usually at least as large as the flux arising from the eruption process for the selected events.
66 - C. Xing , X. Cheng , 2020
Coronal mass ejections (CMEs) are large-scale explosions of the coronal magnetic field. It is believed that magnetic reconnection significantly builds up the core structure of CMEs, a magnetic flux rope, during the eruption. However, the quantitative evolution of the flux rope, particularly its toroidal flux, is still unclear. In this paper, we study the evolution of the toroidal flux of the CME flux rope for four events. The toroidal flux is estimated as the magnetic flux in the footpoint region of the flux rope, which is identified by a method that simultaneously takes the coronal dimming and the hook of the flare ribbon into account. We find that the toroidal flux of the CME flux rope for all four events shows a two-phase evolution: a rapid increasing phase followed by a decreasing phase. We further compare the evolution of the toroidal flux with that of the Geostationary Operational Environmental Satellites soft X-ray flux and find that they are basically synchronous in time, except that the peak of the former is somewhat delayed. The results suggest that the toroidal flux of the CME flux rope may be first quickly built up by the reconnection mainly taking place in the sheared overlying field and then reduced by the reconnection among the twisted field lines within the flux rope, as enlightened by a recent 3D magnetohydrodynamic simulation of CMEs.
This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to a two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchmark study of an analytic solution to the toroidal GS equation with added noise shows deviations in the reconstructed geometry of the flux rope configuration, characterized by the orientation of the rotation axis, the major radius, and the impact parameter. On the other hand, the physical properties of the flux rope, including the axial field strength, and the toroidal and poloidal magnetic flux, agree between the numerical and exact GS solutions. We also present a real event study of a magnetic cloud flux rope from textit{in situ} spacecraft measurements. The devised procedures for toroidal GS reconstruction are successfully executed. Various geometrical and physical parameters are obtained with associated uncertainty estimates. The overall configuration of the flux rope from the GS reconstruction is compared with the corresponding morphological reconstruction based on white-light images. The results show overall consistency, but also discrepancy in that the inclination angle of the flux rope central axis with respect to the ecliptic plane differs by about 20-30 degrees in the plane of the sky. We also compare the results with the original straight-cylinder GS reconstruction and discuss our findings.
Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up, and pulled out of the interior, by a nascent granule. The sheet-like structures we found in the models may match the recent observations of Centeno et al. (2017).
We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence to its decay. We track processes and phenomena across all atmospheric layers, explore their interrelations and compare our findings with recent numerical modelling studies. We used imaging, spectral and spectropolarimetric observations from space-borne and ground-based instruments. The EFR appears next to the chromospheric network and shows all characteristics predicted by numerical simulations. The total magnetic flux of the EFR exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase and expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, producing pressure-driven absorption fronts, visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the EFR. A few minutes after the bipole has reached its maximum magnetic flux, it brightens in soft X-rays forming a coronal bright point, exhibiting episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient magnetic field. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا