Do you want to publish a course? Click here

Disordered high-dimensional optimal control

116   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mean field optimal control problems are a class of optimization problems that arise from optimal control when applied to the many body setting. In the noisy case one has a set of controllable stochastic processes and a cost function that is a functional of their trajectories. The goal of the optimization is to minimize this cost over the control variables. Here we consider the case in which we have $N$ stochastic processes, or agents, with the associated control variables, which interact in a disordered way so that the resulting cost function is random. The goal is to find the average minimal cost for $Nto infty$, when a typical realization of the quenched random interactions is considered. We introduce a simple model and show how to perform a dimensional reduction from the infinite dimensional case to a set of one dimensional stochastic partial differential equations of the Hamilton-Jacobi-Bellman and Fokker-Planck type. The statistical properties of the corresponding stochastic terms must be computed self-consistently, as we show explicitly.



rate research

Read More

We propose a neural network approach for solving high-dimensional optimal control problems arising in real-time applications. Our approach yields controls in a feedback form and can therefore handle uncertainties such as perturbations to the systems state. We accomplish this by fusing the Pontryagin Maximum Principle (PMP) and Hamilton-Jacobi-Bellman (HJB) approaches and parameterizing the value function with a neural network. We train our neural network model using the objective function of the control problem and penalty terms that enforce the HJB equations. Therefore, our training algorithm does not involve data generated by another algorithm. By training on a distribution of initial states, we ensure the controls optimality on a large portion of the state-space. Our grid-free approach scales efficiently to dimensions where grids become impractical or infeasible. We demonstrate the effectiveness of our approach on several multi-agent collision-avoidance problems in up to 150 dimensions. Furthermore, we empirically observe that the number of parameters in our approach scales linearly with the dimension of the control problem, thereby mitigating the curse of dimensionality.
We consider the problem of Gaussian mixture clustering in the high-dimensional limit where the data consists of $m$ points in $n$ dimensions, $n,m rightarrow infty$ and $alpha = m/n$ stays finite. Using exact but non-rigorous methods from statistical physics, we determine the critical value of $alpha$ and the distance between the clusters at which it becomes information-theoretically possible to reconstruct the membership into clusters better than chance. We also determine the accuracy achievable by the Bayes-optimal estimation algorithm. In particular, we find that when the number of clusters is sufficiently large, $r > 4 + 2 sqrt{alpha}$, there is a gap between the threshold for information-theoretically optimal performance and the threshold at which known algorithms succeed.
We analyze the connection between minimizers with good generalizing properties and high local entropy regions of a threshold-linear classifier in Gaussian mixtures with the mean squared error loss function. We show that there exist configurations that achieve the Bayes-optimal generalization error, even in the case of unbalanced clusters. We explore analytically the error-counting loss landscape in the vicinity of a Bayes-optimal solution, and show that the closer we get to such configurations, the higher the local entropy, implying that the Bayes-optimal solution lays inside a wide flat region. We also consider the algorithmically relevant case of targeting wide flat minima of the (differentiable) mean squared error loss. Our analytical and numerical results show not only that in the balanced case the dependence on the norm of the weights is mild, but also, in the unbalanced case, that the performances can be improved.
Least squares Monte Carlo methods are a popular numerical approximation method for solving stochastic control problems. Based on dynamic programming, their key feature is the approximation of the conditional expectation of future rewards by linear least squares regression. Hence, the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us [Belomestny, Schoenmakers, Spokoiny, Zharkynbay. Commun.~Math.~Sci., 18(1):109-121, 2020] proposes to emph{reinforce} the basis functions in the case of optimal stopping problems by already computed value functions for later times, thereby considerably improving the accuracy with limited additional computational cost. We extend the reinforced regression method to a general class of stochastic control problems, while considerably improving the methods efficiency, as demonstrated by substantial numerical examples as well as theoretical analysis.
We develop an Effective Medium Theory to study the electrical transport properties of disordered graphene. The theory includes non-linear screening and exchange-correlation effects allowing us to consider experimentally relevant strengths of the Coulomb interaction. Assuming random Coulomb impurities, we calculate the electrical conductivity as a function of gate voltage describing quantitatively the full cross-over from the fluctuations dominated regime around the Dirac point to the large doping regime at high gate voltages. We find that the conductivity at the Dirac point is strongly affected by exchange correlation effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا