Do you want to publish a course? Click here

An Efficient Transformer Decoder with Compressed Sub-layers

261   0   0.0 ( 0 )
 Added by Ye Lin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The large attention-based encoder-decoder network (Transformer) has become prevailing recently due to its effectiveness. But the high computation complexity of its decoder raises the inefficiency issue. By examining the mathematic formulation of the decoder, we show that under some mild conditions, the architecture could be simplified by compressing its sub-layers, the basic building block of Transformer, and achieves a higher parallelism. We thereby propose Compressed Attention Network, whose decoder layer consists of only one sub-layer instead of three. Extensive experiments on 14 WMT machine translation tasks show that our model is 1.42x faster with performance on par with a strong baseline. This strong baseline is already 2x faster than the widely used standard baseline without loss in performance.



rate research

Read More

There have been significant efforts to interpret the encoder of Transformer-based encoder-decoder architectures for neural machine translation (NMT); meanwhile, the decoder remains largely unexamined despite its critical role. During translation, the decoder must predict output tokens by considering both the source-language text from the encoder and the target-language prefix produced in previous steps. In this work, we study how Transformer-based decoders leverage information from the source and target languages -- developing a universal probe task to assess how information is propagated through each module of each decoder layer. We perform extensive experiments on three major translation datasets (WMT En-De, En-Fr, and En-Zh). Our analysis provides insight on when and where decoders leverage different sources. Based on these insights, we demonstrate that the residual feed-forward module in each Transformer decoder layer can be dropped with minimal loss of performance -- a significant reduction in computation and number of parameters, and consequently a significant boost to both training and inference speed.
Due to its effectiveness and performance, the Transformer translation model has attracted wide attention, most recently in terms of probing-based approaches. Previous work focuses on using or probing source linguistic features in the encoder. To date, the way word translation evolves in Transformer layers has not yet been investigated. Naively, one might assume that encoder layers capture source information while decoder layers translate. In this work, we show that this is not quite the case: translation already happens progressively in encoder layers and even in the input embeddings. More surprisingly, we find that some of the lower decoder layers do not actually do that much decoding. We show all of this in terms of a probing approach where we project representations of the layer analyzed to the final trained and frozen classifier level of the Transformer decoder to measure word translation accuracy. Our findings motivate and explain a Transformer configuration change: if translation already happens in the encoder layers, perhaps we can increase the number of encoder layers, while decreasing the number of decoder layers, boosting decoding speed, without loss in translation quality? Our experiments show that this is indeed the case: we can increase speed by up to a factor 2.3 with small gains in translation quality, while an 18-4 deep encoder configuration boosts translation quality by +1.42 BLEU (En-De) at a speed-up of 1.4.
Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do not exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is designed for the left-to-right decoding process of the non-parallel autoregressive (AR) transformer, which is inappropriate for the parallel NAR transformer since it ignores the right-to-left contexts. Some models are proposed to utilize right-to-left contexts with an extra decoder, but these methods increase the model complexity. To tackle the above problems, we propose a new non-autoregressive transformer with a unified bidirectional decoder (NAT-UBD), which can simultaneously utilize left-to-right and right-to-left contexts. However, direct use of bidirectional contexts will cause information leakage, which means the decoder output can be affected by the character information from the input of the same position. To avoid information leakage, we propose a novel attention mask and modify vanilla queries, keys, and values matrices for NAT-UBD. Experimental results verify that NAT-UBD can achieve character error rates (CERs) of 5.0%/5.5% on the Aishell1 dev/test sets, outperforming all previous NAR transformer models. Moreover, NAT-UBD can run 49.8x faster than the AR transformer baseline when decoding in a single step.
The highly popular Transformer architecture, based on self-attention, is the foundation of large pretrained models such as BERT, that have become an enduring paradigm in NLP. While powerful, the computational resources and time required to pretrain such models can be prohibitive. In this work, we present an alternative self-attention architecture, Shatter, that more efficiently encodes sequence information by softly partitioning the space of relative positions and applying different value matrices to different parts of the sequence. This mechanism further allows us to simplify the multi-headed attention in Transformer to single-headed. We conduct extensive experiments showing that Shatter achieves better performance than BERT, with pretraining being faster per step (15% on TPU), converging in fewer steps, and offering considerable memory savings (>50%). Put together, Shatter can be pretrained on 8 V100 GPUs in 7 days, and match the performance of BERT_Base -- making the cost of pretraining much more affordable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا