Do you want to publish a course? Click here

Cutoff phenomenon for the warp-transpose top with random shuffle

109   0   0.0 ( 0 )
 Added by Subhajit Ghosh
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let ${G_n}_{1}^{infty}$ be a sequence of non-trivial finite groups, and $widehat{G}_n$ denote the set of all non-isomorphic irreducible representations of $G_n$. In this paper, we study the properties of a random walk on the complete monomial group $G_nwr S_n$ generated by the elements of the form $(text{e},dots,text{e},g;text{id})$ and $(text{e},dots,text{e},g^{-1},text{e},dots,text{e},g;(i,n))$ for $gin G_n,;1leq i< n$. We call this the warp-transpose top with random shuffle on $G_nwr S_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is $Oleft(nlog n+frac{1}{2}nlog (|G_n|-1)right)$. We show that this shuffle presents $ell^2$-pre-cutoff at $nlog n+frac{1}{2}nlog (|G_n|-1)$. We also show that this shuffle exhibits $ell^2$-cutoff phenomenon with cutoff time $nlog n+frac{1}{2}nlog (|G_n|-1)$ if $|widehat{G}_n|=o(|G_n|^{delta}n^{2+delta})$ for all $delta>0$. We prove that this shuffle has total variation cutoff at $nlog n+frac{1}{2}nlog (|G_n|-1)$ if $|G_n|=o(n^{delta})$ for all $delta>0$.



rate research

Read More

88 - Subhajit Ghosh 2019
We consider a random walk on the hyperoctahedral group $B_n$ generated by the signed permutations of the forms $(i,n)$ and $(-i,n)$ for $1leq ileq n$. We call this the flip-transpose top with random shuffle on $B_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is of order $nlog n$. We also show that this shuffle exhibits the cutoff phenomenon. In the appendix, we show that a similar random walk on the demihyperoctahedral group $D_n$ also has a cutoff at $left(n-frac{1}{2}right)log n$.
153 - Subhajit Ghosh 2018
In this paper, we investigate the properties of a random walk on the alternating group $A_n$ generated by $3$-cycles of the form $(i,n-1,n)$ and $(i,n,n-1)$. We call this the transpose top-$2$ with random shuffle. We find the spectrum of the transition matrix of this shuffle. We show that the mixing time is of order $left(n-frac{3}{2}right)log n$ and prove that there is a total variation cutoff for this shuffle.
This article generalizes the small noise cutoff phenomenon to the strong solutions of the stochastic heat equation and the damped stochastic wave equation over a bounded domain subject to additive and multiplicative Wiener and Levy noises in the Wasserstein distance. For the additive noise case, we obtain analogous infinite dimensional results to the respective finite dimensional cases obtained recently by Barrera, Hogele and Pardo (JSP2021), that is, the (stronger) profile cutoff phenomenon for the stochastic heat equation and the (weaker) window cutoff phenomenon for the stochastic wave equation. For the multiplicative noise case, which is studied in this context for the first time, the stochastic heat equation also exhibits profile cutoff phenomenon, while for the stochastic wave equation the methods break down due to the lack of symmetry. The methods rely strongly on the explicit knowledge of the respective eigensystem of the stochastic heat and wave operator and the explicit representation of the stochastic solution flows in terms of stochastic exponentials.
We prove a conjecture raised by the work of Diaconis and Shahshahani (1981) about the mixing time of random walks on the permutation group induced by a given conjugacy class. To do this we exploit a connection with coalescence and fragmentation processes and control the Kantorovitch distance by using a variant of a coupling due to Oded Schramm. Recasting our proof in the language of Ricci curvature, our proof establishes the occurrence of a phase transition, which takes the following form in the case of random transpositions: at time $cn/2$, the curvature is asymptotically zero for $cle 1$ and is strictly positive for $c>1$.
Given a continuous time Markov Chain ${q(x,y)}$ on a finite set $S$, the associated noisy voter model is the continuous time Markov chain on ${0,1}^S$, which evolves in the following way: (1) for each two sites $x$ and $y$ in $S$, the state at site $x$ changes to the value of the state at site $y$ at rate $q(x,y)$; (2) each site rerandomizes its state at rate 1. We show that if there is a uniform bound on the rates ${q(x,y)}$ and the corresponding stationary distributions are almost uniform, then the mixing time has a sharp cutoff at time $log|S|/2$ with a window of order 1. Lubetzky and Sly proved cutoff with a window of order 1 for the stochastic Ising model on toroids; we obtain the special case of their result for the cycle as a consequence of our result. Finally, we consider the model on a star and demonstrate the surprising phenomenon that the time it takes for the chain started at all ones to become close in total variation to the chain started at all zeros is of smaller order than the mixing time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا