Do you want to publish a course? Click here

Plasmonic Microbubble Dynamics in Binary Liquids

116   0   0.0 ( 0 )
 Added by Xiaolai Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (f_e) of < 67.5%, bubbles do not exist at the solid-liquid interface. For high f_e values of >80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% < f_e < 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.



rate research

Read More

Investigation into the physics of foaming has traditionally been focused on aqueous systems. Non-aqueous foams, by contrast, are not well understood, but have been the subject of a recent surge in interest motivated by the need to manage foaming across industrial applications. In this review, we provide a comprehensive discussion of the current state-of-the-art methods for characterizing non-aqueous foams, with a critical evaluation of the advantages and limitations of each. Subsequently we present a concise overview of the current understanding of the mechanisms and methods used for stabilizing and destabilizing non-aqueous foams. We conclude the review by discussing open questions to guide future investigations.
Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the pressure across the interface inflates the shell into its original shape. The setup is amenable to optical applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of curvatures.
148 - Gyula I. Toth 2016
In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental {equations of continuum mechanics}, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. {Next the general definition of incompressibility is given}, which is taken into account {in the derivation} by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional), {and (ii) can} influence non-equilibrium pattern formation significantly.
149 - Chen Zhao , Tian Yu , Jiajia Zhou 2021
We analyze the dynamics of liquid filling in a thin, slightly inflated rectangular channel driven by capillary forces. We show that although the amount of liquid $m$ in the channel increases in time following the classical Lucas-Washburn law, $m propto t^{1/2}$, the prefactor is very sensitive to the deformation of the channel because the filling takes place by the growth of two parts, the bulk part (where the cross-section is completely filled by the liquid), and the finger part (where the cross-section is partially filled). We calculate the time dependence of $m$ accounting for the coupling between the two parts and show that the prefactor for the filling can be reduced significantly by a slight deformation of the rectangular channel, e.g., the prefactor is reduced 50% for a strain of 0.1%. This offers an explanation for the large deviation in the value of the prefactor reported previously.
Although the behavior of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory extensional (LAOE) flows using both experiments and boundary integral (BI) simulations. Our results characterize the transient membrane deformations, dynamical regimes, and stress response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary number ($Ca$, dimensionless flow strength), and Deborah number ($De$, dimensionless flow frequency). Results from single vesicle experiments are found to be in good agreement with BI simulations across a wide range of parameters. Our results reveal three distinct dynamical regimes based on vesicle deformation: pulsating, reorienting, and symmetrical regimes. We construct phase diagrams characterizing the transition of vesicle shapes between pulsating, reorienting, and symmetrical regimes within the two-dimensional Pipkin space defined by $De$ and $Ca$. Contrary to observations on clean Newtonian droplets, vesicles do not reach a maximum length twice per strain rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale, and membrane deformation timescale. By calculating the particle stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate. Additionally, we present results on tubular vesicles that undergo shape transformation over several strain cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا