Do you want to publish a course? Click here

Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5

331   0   0.0 ( 0 )
 Added by Jiaxin Yin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover an unconventional charge order in a kagome material KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2x2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2x2 charge modulation exhibits an intensity reversal in real-space, signaling charge ordering. At impurity-pinning free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral CDW in the frustrated kagome lattice, which can not only lead to large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

rate research

Read More

Recently discovered kagome superconductors AV3Sb5 (A=K, Rb, Cs) provide a fresh opportunity to realize and study correlation-driven electronic phenomena on a kagome lattice. The observation of a 2a0 by 2a0 charge density wave (CDW) in the normal state of all members of AV3Sb5 kagome family has generated an enormous amount of interest, in an effort to uncover the nature of this CDW state, and identify any hidden broken symmetries. We use spectroscopic-imaging scanning tunneling microscopy to reveal a pronounced intensity anisotropy between different 2a0 CDW directions in KV3Sb5. In particular, by examining the strength of ordering wave vectors as a function of energy in Fourier transforms of differential conductance maps, we find that one of the CDW directions is distinctly different compared to the other two. This observation points towards an intrinsic rotation symmetry broken electronic ground state, where the symmetry is reduced from C6 to C2. Furthermore, in contrast to previous reports, we find that the CDW phase is insensitive to magnetic field direction, regardless of the presence or absence of atomic defects. Our experiments, combined with earlier observations of a stripe 4a0 charge ordering in CsV3Sb5, establish correlation-driven rotation symmetry breaking as a unifying feature of AV3Sb5 kagome superconductors.
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV$_3$Sb$_5$ is a chiral flux phase. Considering the symmetry of the Kagome lattice, we show that the chiral flux phase has the lowest energy among those states which exhibit $2times2$ charge orders observed experimentally. This state breaks the time-reversal symmetry and displays anomalous Hall effect. The explicit pattern of the density of this state in real space is calculated. These results are supported by recent experiments and suggest that these materials are a new platform to investigate the interplay between topology, superconductivity and electron-electron correlations.
The diversity of emergent phenomena in quantum materials often arises from the interplay between different physical energy scales or broken symmetries. Cooperative interactions among them are rare; however, when they do occur, they often stabilize fundamentally new ground states or phase behaviors. For instance, a pair density wave can form when the superconducting order parameter borrows spatial periodical variation from charge order; a topological superconductor can arise when topologically nontrivial electronic states proximitize with or participate in the formation of the superconducting condensate. Here, we report spectroscopic evidence for a unique synergy of topology and correlation effects in the kagome superconductor CsV$_3$Sb$_5$ - one where topologically nontrivial surface states are pushed below the Fermi energy (E$_F$) by charge order, making the topological physics active near E$_F$ upon entering the superconducting state. Flat bands are observed, indicating that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV$_3$Sb$_5$, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV$_3$Sb$_5$ as a unique platform for exploring the cooperation between the charge order, topology, correlation effects and superconductivity.
Recently discovered Z2 topological kagome metals AV3Sb5 (A = K, Rb, and Cs) exhibit charge density wave (CDW) phases and novel superconducting paring states, providing a versatile platform for studying the interplay between electron correlation and quantum orders. Here we directly visualize CDW-induced bands renormalization and energy gaps in RbV3Sb5 using angle-resolved photoemission spectroscopy, pointing to the key role of tuning van Hove singularities to the Fermi energy in mechanisms of ordering phases. Near the CDW transition temperature, the bands around the Brillouin zone (BZ) boundary are shifted to high-binding energy, forming an M-shape band with singularities near the Fermi energy. The Fermi surfaces are partially gapped and the electronic states on the residual ones should be possibly dedicated to the superconductivity. Our findings are significant in understanding CDW formation and its associated superconductivity.
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. However, the chirality of the charge order has not been reported in the cousin kagome superconductor CsV3Sb5, and the electronic nature of the chirality remains elusive. In this letter, we report the observation of electronic chiral charge order in CsV3Sb5 via scanning tunneling microscopy (STM). We observe a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy. 2x2 charge modulation is highly anticipated as a charge order by fundamental kagome lattice models at van Hove filling, and is shown to exhibit intrinsic chirality. We find that the 1x4 superlattices forms various small domain walls, and can be a surface effect as supported by our first-principles calculations. Crucially, we find that the amplitude of the energy gap opened by the charge order exhibits real space modulations, and features 2x2 wave vectors with chirality, highlighting the electronic nature of the chiral charge order. STM study at 0.4K reveals a superconducting energy gap with a gap size 2{Delta}=0.85meV, which estimates a moderate superconductivity coupling strength with 2{Delta}/kBTc=3.9. When further applying a c-axis magnetic field, vortex core bound states are observed within this gap, indicative of clean-limit superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا