Do you want to publish a course? Click here

HopRetriever: Retrieve Hops over Wikipedia to Answer Complex Questions

426   0   0.0 ( 0 )
 Added by Xiaoguang Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.



rate research

Read More

160 - Chenhao Zhu , Kan Ren , Xuan Liu 2015
We present a question answering system over DBpedia, filling the gap between user information needs expressed in natural language and a structured query interface expressed in SPARQL over the underlying knowledge base (KB). Given the KB, our goal is to comprehend a natural language query and provide corresponding accurate answers. Focusing on solving the non-aggregation questions, in this paper, we construct a subgraph of the knowledge base from the detected entities and propose a graph traversal method to solve both the semantic item mapping problem and the disambiguation problem in a joint way. Compared with existing work, we simplify the process of query intention understanding and pay more attention to the answer path ranking. We evaluate our method on a non-aggregation question dataset and further on a complete dataset. Experimental results show that our method achieves best performance compared with several state-of-the-art systems.
163 - Xinya Du , Claire Cardie 2018
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models that only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.
Semantic parsing transforms a natural language question into a formal query over a knowledge base. Many existing methods rely on syntactic parsing like dependencies. However, the accuracy of producing such expressive formalisms is not satisfying on long complex questions. In this paper, we propose a novel skeleton grammar to represent the high-level structure of a complex question. This dedicated coarse-grained formalism with a BERT-based parsing algorithm helps to improve the accuracy of the downstream fine-grained semantic parsing. Besides, to align the structure of a question with the structure of a knowledge base, our multi-strategy method combines sentence-level and word-level semantics. Our approach shows promising performance on several datasets.
Conversational and task-oriented dialogue systems aim to interact with the user using natural responses through multi-modal interfaces, such as text or speech. These desired responses are in the form of full-length natural answers generated over facts retrieved from a knowledge source. While the task of generating natural answers to questions from an answer span has been widely studied, there has been little research on natural sentence generation over spoken content. We propose a novel system to generate full length natural language answers from spoken questions and factoid answers. The spoken sequence is compactly represented as a confusion network extracted from a pre-trained Automatic Speech Recognizer. This is the first attempt towards generating full-length natural answers from a graph input(confusion network) to the best of our knowledge. We release a large-scale dataset of 259,788 samples of spoken questions, their factoid answers and corresponding full-length textual answers. Following our proposed approach, we achieve comparable performance with best ASR hypothesis.
The task of answering questions about images has garnered attention as a practical service for assisting populations with visual impairments as well as a visual Turing test for the artificial intelligence community. Our first aim is to identify the common vision skills needed for both scenarios. To do so, we analyze the need for four vision skills---object recognition, text recognition, color recognition, and counting---on over 27,000 visual questions from two datasets representing both scenarios. We next quantify the difficulty of these skills for both humans and computers on both datasets. Finally, we propose a novel task of predicting what vision skills are needed to answer a question about an image. Our results reveal (mis)matches between aims of real users of such services and the focus of the AI community. We conclude with a discussion about future directions for addressing the visual question answering task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا