Do you want to publish a course? Click here

Harvesting Paragraph-Level Question-Answer Pairs from Wikipedia

164   0   0.0 ( 0 )
 Added by Xinya Du
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models that only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.



rate research

Read More

We introduce ASQ, a tool to automatically mine questions and answers from a sentence using the Abstract Meaning Representation (AMR). Previous work has used question-answer pairs to specify the predicate-argument structure of a sentence using natural language, which does not require linguistic expertise or training, and created datasets such as QA-SRL and QAMR, for which the question-answer pair annotations were crowdsourced. Our goal is to build a tool (ASQ) that maps from the traditional meaning representation AMR to a question-answer meaning representation (QMR). This enables construction of QMR datasets automatically in various domains using existing high-quality AMR parsers, and provides an automatic mapping AMR to QMR for ease of understanding by non-experts. A qualitative evaluation of the output generated by ASQ from the AMR 2.0 data shows that the question-answer pairs are natural and valid, and demonstrate good coverage of the content. We run ASQ on the sentences from the QAMR dataset, to observe that the semantic roles in QAMR are also captured by ASQ. We intend to make this tool and the results publicly available for others to use and build upon.
Neural network-based methods represent the state-of-the-art in question generation from text. Existing work focuses on generating only questions from text without concerning itself with answer generation. Moreover, our analysis shows that handling rare words and generating the most appropriate question given a candidate answer are still challenges facing existing approaches. We present a novel two-stage process to generate question-answer pairs from the text. For the first stage, we present alternatives for encoding the span of the pivotal answer in the sentence using Pointer Networks. In our second stage, we employ sequence to sequence models for question generation, enhanced with rich linguistic features. Finally, global attention and answer encoding are used for generating the question most relevant to the answer. We motivate and linguistically analyze the role of each component in our framework and consider compositions of these. This analysis is supported by extensive experimental evaluations. Using standard evaluation metrics as well as human evaluations, our experimental results validate the significant improvement in the quality of questions generated by our framework over the state-of-the-art. The technique presented here represents another step towards more automated reading comprehension assessment. We also present a live system footnote{Demo of the system is available at url{https://www.cse.iitb.ac.in/~vishwajeet/autoqg.html}.} to demonstrate the effectiveness of our approach.
Large-scale question-answer (QA) pairs are critical for advancing research areas like machine reading comprehension and question answering. To construct QA pairs from documents requires determining how to ask a question and what is the corresponding answer. Existing methods for QA pair generation usually follow a pipeline approach. Namely, they first choose the most likely candidate answer span and then generate the answer-specific question. This pipeline approach, however, is undesired in mining the most appropriate QA pairs from documents since it ignores the connection between question generation and answer extraction, which may lead to incompatible QA pair generation, i.e., the selected answer span is inappropriate for question generation. However, for human annotators, we take the whole QA pair into account and consider the compatibility between question and answer. Inspired by such motivation, instead of the conventional pipeline approach, we propose a model named OneStop generate QA pairs from documents in a one-stop approach. Specifically, questions and their corresponding answer span is extracted simultaneously and the process of question generation and answer extraction mutually affect each other. Additionally, OneStop is much more efficient to be trained and deployed in industrial scenarios since it involves only one model to solve the complex QA generation task. We conduct comprehensive experiments on three large-scale machine reading comprehension datasets: SQuAD, NewsQA, and DuReader. The experimental results demonstrate that our OneStop model outperforms the baselines significantly regarding the quality of generated questions, quality of generated question-answer pairs, and model efficiency.
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy.
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplification does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing jargon terms; we find that this yields improvements over baselines in terms of readability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا