Do you want to publish a course? Click here

Colonoscopy Polyp Detection: Domain Adaptation From Medical Report Images to Real-time Videos

122   0   0.0 ( 0 )
 Added by Zhi-Qin Zhan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Automatic colorectal polyp detection in colonoscopy video is a fundamental task, which has received a lot of attention. Manually annotating polyp region in a large scale video dataset is time-consuming and expensive, which limits the development of deep learning techniques. A compromise is to train the target model by using labeled images and infer on colonoscopy videos. However, there are several issues between the image-based training and video-based inference, including domain differences, lack of positive samples, and temporal smoothness. To address these issues, we propose an Image-video-joint polyp detection network (Ivy-Net) to address the domain gap between colonoscopy images from historical medical reports and real-time videos. In our Ivy-Net, a modified mixup is utilized to generate training data by combining the positive images and negative video frames at the pixel level, which could learn the domain adaptive representations and augment the positive samples. Simultaneously, a temporal coherence regularization (TCR) is proposed to introduce the smooth constraint on feature-level in adjacent frames and improve polyp detection by unlabeled colonoscopy videos. For evaluation, a new large colonoscopy polyp dataset is collected, which contains 3056 images from historical medical reports of 889 positive patients and 7.5-hour videos of 69 patients (28 positive). The experiments on the collected dataset demonstrate that our Ivy-Net achieves the state-of-the-art result on colonoscopy video.



rate research

Read More

Deep learning in gastrointestinal endoscopy can assist to improve clinical performance and be helpful to assess lesions more accurately. To this extent, semantic segmentation methods that can perform automated real-time delineation of a region-of-interest, e.g., boundary identification of cancer or precancerous lesions, can benefit both diagnosis and interventions. However, accurate and real-time segmentation of endoscopic images is extremely challenging due to its high operator dependence and high-definition image quality. To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices. In this work, we propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images. Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones. We use video capsule endoscopy and standard colonoscopy datasets with polyps, and a dataset consisting of endoscopy biopsies and surgical instruments, to evaluate the effectiveness of our approach. Our experiments demonstrate the increased performance of our architecture in terms of a trade-off between model complexity, speed, model parameters, and metric performances. Moreover, the resulting model size is relatively tiny, with only nearly 36,000 parameters compared to traditional deep learning approaches having millions of parameters.
Colorectal cancer (CRC) is a common and lethal disease. Globally, CRC is the third most commonly diagnosed cancer in males and the second in females. For colorectal cancer, the best screening test available is the colonoscopy. During a colonoscopic procedure, a tiny camera at the tip of the endoscope generates a video of the internal mucosa of the colon. The video data are displayed on a monitor for the physician to examine the lining of the entire colon and check for colorectal polyps. Detection and removal of colorectal polyps are associated with a reduction in mortality from colorectal cancer. However, the miss rate of polyp detection during colonoscopy procedure is often high even for very experienced physicians. The reason lies in the high variation of polyp in terms of shape, size, textural, color and illumination. Though challenging, with the great advances in object detection techniques, automated polyp detection still demonstrates a great potential in reducing the false negative rate while maintaining a high precision. In this paper, we propose a novel anchor free polyp detector that can localize polyps without using predefined anchor boxes. To further strengthen the model, we leverage a Context Enhancement Module and Cosine Ground truth Projection. Our approach can respond in real time while achieving state-of-the-art performance with 99.36% precision and 96.44% recall.
168 - Qin Wang , Hui Che , Weizhen Ding 2021
Differentiation of colorectal polyps is an important clinical examination. A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images. Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images. However, the wide range of these models applications for clinical work has been limited by the lagging of imaging techniques. Thus, we propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification (CPC) through directly using white-light (WL) colonoscopy images in the examination. In practice, during training, the auxiliary NBI images are utilized to train a teacher network and guide the student network to acquire richer feature representation from WL images. The feature transfer is realized by domain alignment and contrastive learning. Eventually the final student network has the ability to extract aligned features from only WL images to facilitate the CPC task. Besides, we release the first public-available paired CPC dataset containing WL-NBI pairs for the alignment training. Quantitative and qualitative evaluation indicates that the proposed method outperforms the previous methods in CPC, improving the accuracy by 5.6%with very fast speed.
121 - Geng-Xin Xu , Chen Liu , Jun Liu 2021
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.
Anomaly detection methods generally target the learning of a normal image distribution (i.e., inliers showing healthy cases) and during testing, samples relatively far from the learned distribution are classified as anomalies (i.e., outliers showing disease cases). These approaches tend to be sensitive to outliers that lie relatively close to inliers (e.g., a colonoscopy image with a small polyp). In this paper, we address the inappropriate sensitivity to outliers by also learning from inliers. We propose a new few-shot anomaly detection method based on an encoder trained to maximise the mutual information between feature embeddings and normal images, followed by a few-shot score inference network, trained with a large set of inliers and a substantially smaller set of outliers. We evaluate our proposed method on the clinical problem of detecting frames containing polyps from colonoscopy video sequences, where the training set has 13350 normal images (i.e., without polyps) and less than 100 abnormal images (i.e., with polyps). The results of our proposed model on this data set reveal a state-of-the-art detection result, while the performance based on different number of anomaly samples is relatively stable after approximately 40 abnormal training images.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا